首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congestive heart failure is a growing, worldwide epidemic. The major causes of heart failure are related to irreversible damage resulting from myocardial infarction (heart attack). The long-standing axiom has been that the myocardium has a limited capacity for self-repair or regeneration; and the irreversible loss of cardiac muscle and accompanying contraction and fibrosis of myocardial scar tissue, sets into play a series of events, namely, progressive ventricular remodeling of nonischemic myocardium that ultimately leads to progressive heart failure. The loss of cardiomyocyte survival cues is associated with diverse pathways for heart failure, underscoring the importance of maintaining the number of viable cardiomyocytes during heart failure progression. Currently, no medication or procedure used clinically has shown efficacy in replacing the myocardial scar with functioning contractile tissue. Therefore, given the major morbidity and mortality associated with myocardial infarction and heart failure, new approaches have been sought to address the principal pathophysiologic deficits responsible for these conditions, resulting from the loss of cardiomyocytes and viable blood vessels. Recently, the identification of stem cells from bone marrow capable of contributing to tissue regeneration has ignited significant interest in the possibility that cell therapy could be employed therapeutically for the repair of damaged myocardium. In this review, we will discuss the currently available bone marrow-derived stem progenitor cells for myocardial repair and focus on the advantages of using recently identified novel bone marrow-derived multipotent stem cells (BMSC)  相似文献   

2.
Cardiac diseases, characterized by cardiomyocyte loss, lead to dramatic impairment of cardiac function and ultimately to congestive heart failure. Despite significant advances, conventional treatments do not correct the defects in cardiac muscle cell numbers and the prognosis of congestive heart failure remains poor. The existence, in adult mammalian heart, of low but detectable cardiomyocyte proliferative capacities has shifted the target of regenerative therapy toward new therapeutical strategy. Indeed, the stimulation of terminally differentiated cardiomyocyte proliferation represents the main therapeutic approach for heart regeneration. Increasing evidence demonstrating that the loss of mammalian cardiomyocyte renewal potential shortly after birth causes the loss of regenerative capacities, strongly support the hypothesis that a detailed understanding of the molecular mechanisms controlling fetal and postnatal cardiomyocyte proliferation is essential to identify targets for cardiac regeneration. Here, we will review major developmental mechanisms regulating fetal cardiomyocyte proliferation and will describe the impact of the developmental switch, operating at birth and driving postnatal heart maturation, on the regulation of adult cardiomyocyte proliferation, all these mechanisms representing potential targets for cardiac repair and regeneration.  相似文献   

3.
Cardiovascular disease is one of leading causes of death throughout the U.S. and the world. The damage of cardiomyocytes resulting from ischemic injury is irreversible and leads to the development of progressive heart failure, which is characterized by the loss of functional cardiomyocytes. Because cardiomyocytes are unable to regenerate in the adult heart, cell-based therapy of transplantation provides a potential alternative approach to replace damaged myocardial tissue and restore cardiac function. A major roadblock toward this goal is the lack of donor cells; therefore, it is urgent to identify the cardiovascular cells that are necessary for achieving cardiac muscle regeneration. Pluripotent embryonic stem (ES) cells have enormous potential as a source of therapeutic tissues, including cardiovascular cells; however, the regulatory elements mediating ES cell differentiation to cardiomyocytes are largely unknown. In this review, we will focus on extrinsic factors that play a role in regulating different stages of cardiomyocyte differentiation of ES cells.  相似文献   

4.
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide.Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue.Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology.Heart transplantation usually cannot be relied on,as there is a major discrepancy between the availability of donors and recipients.As a result,heart failure carries a poor prognosis and high mortality rate.As the heart lacks significant endogenous regeneration potential,novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues.This review will discuss past,present,and future clinical trials,factors that influence stem cell therapy outcomes as well as ethical and safety considerations.Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function.This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type,dosing,route of administration,patient parameters and other important variables that contribute to successful stem cell therapy.Nonetheless,the field of stem cell therapeutics continues to advance at an unprecedented pace.We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.  相似文献   

5.
Understanding how stem cells interact with cardiomyocytes is crucial for cell-based therapies to restore the cardiomyocyte loss that occurs during myocardial infarction and other cardiac diseases. It has been thought that functional myocardial repair and regeneration could be regulated by stem cell-cardiomyocyte contact. However, because various contact modes (junction formation, cell fusion, partial cell fusion, and tunneling nanotube formation) occur randomly in a conventional coculture system, the particular regulation corresponding to a specific contact mode could not be analyzed. In this study, we used laser-patterned biochips to define cell-cell contact modes for systematic study of contact-mediated cellular interactions at the single-cell level. The results showed that the biochip design allows defined stem cell-cardiomyocyte contact-mode formation, which can be used to determine specific cellular interactions, including electrical coupling, mechanical coupling, and mitochondria transfer. The biochips will help us gain knowledge of contact-mediated interactions between stem cells and cardiomyocytes, which are fundamental for formulating a strategy to achieve stem cell-based cardiac tissue regeneration.  相似文献   

6.
7.
Heart disease is a leading cause of morbidity and mortality worldwide. Myocardial infarction leads to permanent loss of cardiac tissue and ultimately heart failure. However, current therapies could only stall the progression of the disease. Thus, new therapies are needed to regenerate damaged hearts to overcome poor prognosis of patients with heart failure. The shortage of heart donors is also a factor for innovating new therapies. Although the cardiac performance by cell-based therapy has improved, unsatisfactory cell retention and transplant survival still plague this technique. Because biomaterials can improve the cell retention, survival and differentiation, cardiac tissue engineering is now being explored as an approach to support cell-based therapies and enhance their efficacy for cardiac disease. In the last decade, cardiac tissue engineering has made considerable progress. Among different kinds of approaches in the cardiac tissue engineering, the approach of injectable cardiac tissue engineering is more minimally invasive than that of in vitro engineered tissue or epicardial patch implantation. It is therefore clinically appealing. In this review, we strive to describe the major progress in the flied of injectable cardiac tissue engineering, including seeding cell sources, biomaterials and novel findings in preclinical studies and clinical applications. The remaining problems will also be discussed.  相似文献   

8.
多潜能干细胞具有无限增殖的能力,并能够分化为心肌细胞,因此在心脏再生方面拥有巨大潜力.胚胎发育过程为干细胞定向分化提供了重要线索,在过去的几年中,通过操控心脏发育关键通路,在心肌定向分化方面取得了重要进展,但是现有的分化方法仍不能稳定地诱导心肌细胞,表明现有的通路不能有效解决这些问题.视黄酸(RA)通路在心脏发育过程中发挥重要作用,RA缺失会导致心房变小、心室小梁减少、心肌壁增厚且细胞间连接松散.在体外心肌定向分化过程中,RA多用于促进多潜能干细胞向心房分化.但从RA通路基因敲除小鼠的表型来看,除了调控心肌亚型分化,RA在多个发育阶段发挥重要作用.深入解析RA在心肌分化各阶段的作用机制,将有助于获得高质量的心肌细胞.同时,研究RA在心内膜和心外膜分化中的作用机制也有助于解释RA通路敲除小鼠的心脏异常.总之,从RA在胚胎发育中的作用来看,需要更多的体外研究来揭示RA在心肌谱系分化中的作用.本文综述了RA通路在心脏发育的心肌分化过程中的作用,并探讨了需要解决的问题.  相似文献   

9.
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.  相似文献   

10.
Cardiomyocytes respond to physiological or pathological stress only by hypertrophy and not by an increase in the number of functioning cardiomyocytes. However, recent evidence suggests that adult cardiomyocytes have the ability, albeit limited, to divide to compensate for the cardiomyocyte loss in the event of myocardial injury. Similarly, the presence of stem cells in the myocardium is a good omen. Their activation to participate in the repair process is, however, hindered by some as-yet-undetermined biological impediments. The rationale behind the use of adult stem cell transplantation is to supplement the inadequacies of the intrinsic repair mechanism of the heart and compensate for the cardiomyocyte loss in the event of injury. Various cell types including embryonic, fetal, and adult cardiomyocytes, smooth muscle cells, and stable cell lines have been used to augment the declining cardiomyocyte number and cardiac function. More recently, the focus has been shifted to the use of autologous skeletal myoblasts and bone marrow-derived stem cells. This review is a synopsis of some interesting aspects of the fast-emerging field of bone marrow-derived stem cell therapy for cardiac repair.  相似文献   

11.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

12.
Adult stem cell therapy for the heart   总被引:14,自引:0,他引:14  
The purpose of this review is to summarize current data leading to and arising from recent clinical application of cellular therapy for acute myocardial infarct (heart attack) and congestive heart failure. We specifically focus on use of adult stem cells and compare and contrast bone marrow and adipose tissue; two different sources from which stem cells can be harvested in substantial numbers with limited morbidity. Cellular therapy is the latest in a series of strategies applied in an effort to prevent or mitigate the progressive and otherwise irreversible loss of cardiac function that frequently follows a heart attack. Unlike surgical, pharmacologic, and gene transfer approaches, cellular therapy has the potential to restore cardiac function by providing cells capable of regenerating damaged myocardium and/or myocardial function. Skeletal muscle myoblast expansion and transfer allows delivery of cells with contractile function, albeit without any evidence of cardiomyogenesis or electrical coupling to remaining healthy myocardium. Delivery of endothelial progenitor cells (EPCs) which drive reperfusion of infarct zone tissues is also promising, although this mechanism is directed at halting ongoing degeneration rather than initiating a regenerative process. By contrast, demonstration of the ability of adult stem cells to undergo cardiomyocyte differentiation both in vitro and in vivo suggests a potential for regenerative medicine. This potential is being examined in early clinical studies.  相似文献   

13.
Neurodegenerative disease is a brain disorder caused by the loss of structure and function of neurons that lowers the quality of human life. Apart from the limited potential for endogenous regeneration, stem cell-based therapies hold considerable promise for maintaining homeostatic tissue regeneration and enhancing plasticity. Despite many studies, there remains insufficient evidence for stem cell tracing and its correlation with endogenous neural cells in brain tissue with three-dimensional structures. Recent advancements in tissue optical clearing techniques have been developed to overcome the existing shortcomings of cross-sectional tissue analysis in thick and complex tissues. This review focuses on recent progress of stem cell treatments to improve neurodegenerative disease, and introduces tissue optical clearing techniques that can implement a three-dimensional image as a proof of concept. This review provides a more comprehensive understanding of stem cell tracing that will play an important role in evaluating therapeutic efficacy and cellular interrelationship for regeneration in neurodegenerative diseases.  相似文献   

14.
Stem cell-based therapy is emerging as a novel approach for myocardial repair over conventional cardiovascular therapies. In addition to embryonic stem cells and adult stem cells from noncardiac sources, there is a small population of resident stem cells in the heart from which new cardiac cells (myocytes, vascular endothelial cells and smooth muscle cells) can be derived and used for cardiac repair in case of heart injury. It has been proposed that the clinical benefit of stem cells may arise from secreted proteins that mediate regeneration in a paracrine/autocrine manner. To be able to track the regulatory pathway on a molecular basis, utilization of proteomics in stem cell research is essential. Proteomics offers a tool that can address questions regarding stem cell response to disease/injury.  相似文献   

15.
Cardiovascular diseases represent the world’s leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.  相似文献   

16.
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.Subject terms: Cell-cycle exit, Cytokinesis  相似文献   

17.
Ischemic heart disease is the main cause of death and morbidity in most industrialized countries. Stem- and progenitor cell-based treatment approaches for ischemic heart disease are therefore an important frontier in cardiovascular and regenerative medicine. Experimental studies have shown that bone-marrow-derived stem cells and endothelial progenitor cells can improve cardiac function after myocardial infarction, clinical phase I and II studies were rapidly initiated to translate this concept into the clinical setting. However, as of now the effects of stem/progenitor cell administration on cardiac function in the clinical setting have not met expectations. Thus, a better understanding of causes of the current limitations of cell-based therapies is urgently required. Importantly, the number and function of endothelial progenitor cells is reduced in patients with cardiovascular risk factors and/or coronary artery disease. These observations may provide opportunities for an optimization of cell-based treatment approaches. This review provides a summary of current evidence for the role and potential of stem and progenitor cells in the pathophysiology and treatment of ischemic heart disease, including the properties, and repair and regenerative capacities of various stem and progenitor cell populations. In addition, we describe modes of stem/progenitor cell delivery, modulation of their homing as well as potential approaches to "prime" stem/progenitor cells for cardiovascular cell-based therapies.  相似文献   

18.
Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise‐induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet‐derived growth factor (PDGF) receptor‐α and CD34/PDGF receptor‐β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal.  相似文献   

19.
20.
Heart disorders are a major health concern worldwide responsible for millions of deaths every year. Among the many disorders of the heart, myocardial infarction, which can lead to the development of congestive heart failure, arrhythmias, or even death, has the most severe social and economic ramifications. Lack of sufficient available donor hearts for heart transplantation, the only currently viable treatment for heart failure other than medical management options (ACE inhibition, beta blockade, use of AICDs, etc.) that improve the survival of patients with heart failure emphasises the need for alternative therapies. One promising alternative replaces cardiac muscle damaged by myocardial infarction with new contractile cardiomyocytes and vessels obtained through stem cell-based regeneration.We report on the state of the art of recovery of cardiac functions by using stem cell engineering. Current research focuses on (a) inducing stem cells into becoming cardiac cells before or after injection into a host, (b) growing replacement heart tissue in vitro, and (c) stimulating the proliferation of the post-mitotic cardiomyocytes in situ. The most promising treatment option for patients is the engineering of new heart tissue that can be implanted into damaged areas. Engineering of cardiac tissue currently employs the use of co-culture of stem cells with scaffold microenvironments engineered to improve tissue survival and enhance differentiation. Growth of heart tissue in vitro using scaffolds, soluble collagen, and cell sheets has unique advantages. To compensate for the loss of ventricular mass and contractility of the injured cardiomyocytes, different stem cell populations have been extensively studied as potential sources of new cells to ameliorate the injured myocardium and eventually restore cardiac function. Unresolved issues including insufficient cell generation survival, growth, and differentiation have led to mixed results in preclinical and clinical studies. Addressing these limitations should ensure the successful production of replacement heart tissue to benefit cardiac patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号