首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10−5) for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable.  相似文献   

2.
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.  相似文献   

3.
False-positive or false-negative results attributable to undetected genotyping errors and confounding factors present a constant challenge for genome-wide association studies (GWAS) given the low signals associated with complex phenotypes and the noise associated with high-throughput genotyping. In the context of the genetics of kidneys in diabetes (GoKinD) study, we identify a source of error in genotype calling and demonstrate that a standard battery of quality-control (QC) measures is not sufficient to detect and/or correct it. We show that, if genotyping and calling are done by plate (batch), even a few DNA samples of marginally acceptable quality can profoundly alter the allele calls for other samples on the plate. In turn, this leads to significant differential bias in estimates of allele frequency between plates and, potentially, to false-positive associations, particularly when case and control samples are not sufficiently randomized to plates. This problem may become widespread as investigators tap into existing public databases for GWAS control samples. We describe how to detect and correct this bias by utilizing additional sources of information, including raw signal-intensity data.  相似文献   

4.
BACKGROUND: Genetic variation in the folate metabolic pathway may influence the risk of congenital heart defects. This study was undertaken to assess the associations between the inherited and maternal genotypes for variants in folate‐related genes and the risk of a composite heart phenotype that included two component phenotypes: conotruncal heart defects (CTDs) and left‐sided cardiac lesions (LSLs). METHODS: Nine folate‐related gene variants were evaluated using data from 692 case‐parent triads (CTD, n = 419; LSL, n = 273). Log‐linear analyses were used to test for heterogeneity of the genotype‐phenotype association across the two component phenotypes (i.e., CTD and LSLs) and, when there was no evidence of heterogeneity, to assess the associations of the maternal and inherited genotypes with the composite phenotype. RESULTS: There was little evidence of heterogeneity of the genotype‐phenotype association across the two component phenotypes or of an association between the genotypes and the composite phenotype. There was evidence of heterogeneity in the association of the maternal MTR A2756G genotype (p = 0.01) with CTDs and LSLs. However, further analyses suggested that the observed associations with the maternal MTR A2756G genotype might be confounded by parental imprinting effects. CONCLUSIONS: Our analyses of these data provide little evidence that the folate‐related gene variants evaluated in this study influence the risk of this composite congenital heart defect phenotype. However, larger and more comprehensive studies that evaluate parent‐of‐origin effects, as well as additional folate‐related genes, are required to more fully explore the relation between folate and congenital heart defects. Birth Defects Research (Part A) 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.  相似文献   

6.
Genome-wide association studies (GWAS) examine the entire human genome with the goal of identifying genetic variants (usually single nucleotide polymorphisms (SNPs)) that are associated with phenotypic traits such as disease status and drug response. The discordance of significantly associated SNPs for the same disease identified from different GWAS indicates that false associations exist in such results. In addition to the possible sources of spurious associations that have been investigated and discussed intensively, such as sample size and population stratification, an accurate and reproducible genotype calling algorithm is required for concordant GWAS results from different studies. However, variations of genotype calling of an algorithm and their effects on significantly associated SNPs identified in downstream association analyses have not been systematically investigated. In this paper, the variations of genotype calling using the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM) algorithm and the resulting influence on the lists of significantly associated SNPs were evaluated using the raw data of 270 HapMap samples analysed with the Affymetrix Human Mapping 500K Array Set (Affy500K) by changing algorithmic parameters. Modified were the Dynamic Model (DM) call confidence threshold (threshold) and the number of randomly selected SNPs (size). Comparative analysis of the calling results and the corresponding lists of significantly associated SNPs identified through association analysis revealed that algorithmic parameters used in BRLMM affected the genotype calls and the significantly associated SNPs. Both the threshold and the size affected the called genotypes and the lists of significantly associated SNPs in association analysis. The effect of the threshold was much larger than the effect of the size. Moreover, the heterozygous calls had lower consistency compared to the homozygous calls.  相似文献   

7.
We introduce a new framework for the analysis of association studies, designed to allow untyped variants to be more effectively and directly tested for association with a phenotype. The idea is to combine knowledge on patterns of correlation among SNPs (e.g., from the International HapMap project or resequencing data in a candidate region of interest) with genotype data at tag SNPs collected on a phenotyped study sample, to estimate ("impute") unmeasured genotypes, and then assess association between the phenotype and these estimated genotypes. Compared with standard single-SNP tests, this approach results in increased power to detect association, even in cases in which the causal variant is typed, with the greatest gain occurring when multiple causal variants are present. It also provides more interpretable explanations for observed associations, including assessing, for each SNP, the strength of the evidence that it (rather than another correlated SNP) is causal. Although we focus on association studies with quantitative phenotype and a relatively restricted region (e.g., a candidate gene), the framework is applicable and computationally practical for whole genome association studies. Methods described here are implemented in a software package, Bim-Bam, available from the Stephens Lab website http://stephenslab.uchicago.edu/software.html.  相似文献   

8.
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome‐editing technologies.  相似文献   

9.
Although approaches for performing genome‐wide association studies (GWAS) are well developed, conventional GWAS requires high‐density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP‐GWAS (extreme‐phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well‐characterized kernel row number trait, which was selected to enable comparisons between the results of XP‐GWAS and conventional GWAS. An exome‐sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait‐associated variants were significantly enriched in regions identified by conventional GWAS. XP‐GWAS was able to resolve several linked QTL and detect trait‐associated variants within a single gene under a QTL peak. XP‐GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest.  相似文献   

10.
Genome‐wide association studies (GWAS) have been widely applied to disentangle the genetic basis of complex traits. In cattle breeds, classical GWAS approaches with medium‐density marker panels are far from conclusive, especially for complex traits. This is due to the intrinsic limitations of GWAS and the assumptions that are made to step from the association signals to the functional variations. Here, we applied a gene‐based strategy to prioritize genotype–phenotype associations found for milk production and quality traits with classical approaches in three Italian dairy cattle breeds with different sample sizes (Italian Brown = 745; Italian Holstein = 2058; Italian Simmental = 477). Although classical regression on single markers revealed only a single genome‐wide significant genotype–phenotype association, for Italian Holstein, the gene‐based approach identified specific genes in each breed that are associated with milk physiology and mammary gland development. As no standard method has yet been established to step from variation to functional units (i.e., genes), the strategy proposed here may contribute to revealing new genes that play significant roles in complex traits, such as those investigated here, amplifying low association signals using a gene‐centric approach.  相似文献   

11.
Genome-wide association studies (GWAS) have identified many variants that influence high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However, environmental modifiers, such as smoking, of these known genotype–phenotype associations are just recently emerging in the literature. We have tested for interactions between smoking and 49 GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their biological plausibility, we were unable to detect significant SNP × smoking interactions.  相似文献   

12.
In genome-wide association studies, only a subset of all genomic variants are typed by current, high-throughput, SNP-genotyping platforms. However, many of the untyped variants can be well predicted from typed variants, with linkage disequilibrium (LD) information among typed and untyped variants available from an external reference panel such as HapMap. Incorporation of such external information can allow one to perform tests of association between untyped variants and phenotype, thereby making more efficient use of the available genotype data. When related individuals are included in case-control samples, the dependence among their genotypes must be properly addressed for valid association testing. In the context of testing untyped variants, an additional analytical challenge is that the dependence, across related individuals, of the partial information on untyped-SNP genotypes must also be assessed and incorporated into the analysis for valid inference. We address this challenge with ATRIUM, a method for case-control association testing with untyped SNPs, based on genome screen data in samples in which some individuals are related. ATRIUM uses LD information from an external reference panel to specify a one-degree-of-freedom test of association with an untyped SNP. It properly accounts for dependence in the partial information on untyped-SNP genotypes across related individuals. We demonstrate that ATRIUM is robust in that it maintains the nominal type I error rate even when the external reference panel is not well matched to the case-control sample. We apply the method to detect association between type 2 diabetes and variants on chromosome 10 in the Framingham SHARe data.  相似文献   

13.
Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of “non-cases”) reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size.  相似文献   

14.
The last decade has seen rapid improvements in high-throughput single nucleotide polymorphism (SNP) genotyping technologies that have consequently made genome-wide association studies (GWAS) possible. With tens to hundreds of thousands of SNP markers being tested simultaneously in GWAS, it is imperative to appropriately pre-process, or filter out, those SNPs that may lead to false associations. This paper explores the relationships between various SNP genotype and phenotype attributes and their effects on false associations. We show that (i) uniformly distributed ordinal data as well as binary data are more easily influenced, though not necessarily negatively, by differences in various SNP attributes compared with normally distributed data; (ii) filtering SNPs on minor allele frequency (MAF) and extent of Hardy–Weinberg equilibrium (HWE) deviation has little effect on the overall false positive rate; (iii) in some cases, filtering on MAF only serves to exclude SNPs from the analysis without reduction of the overall proportion of false associations; and (iv) HWE, MAF and heterozygosity are all dependent on minor genotype frequency, a newly proposed measure for genotype integrity.  相似文献   

15.
During the last several years, high-density genotyping SNP arrays have facilitated genome-wide association studies (GWAS) that successfully identified common genetic variants associated with a variety of phenotypes. However, each of the identified genetic variants only explains a very small fraction of the underlying genetic contribution to the studied phenotypic trait. Moreover, discordance observed in results between independent GWAS indicates the potential for Type I and II errors. High reliability of genotyping technology is needed to have confidence in using SNP data and interpreting GWAS results. Therefore, reproducibility of two widely genotyping technology platforms from Affymetrix and Illumina was assessed by analyzing four technical replicates from each of the six individuals in five laboratories. Genotype concordance of 99.40% to 99.87% within a laboratory for the sample platform, 98.59% to 99.86% across laboratories for the same platform, and 98.80% across genotyping platforms was observed. Moreover, arrays with low quality data were detected when comparing genotyping data from technical replicates, but they could not be detected according to venders' quality control (QC) suggestions. Our results demonstrated the technical reliability of currently available genotyping platforms but also indicated the importance of incorporating some technical replicates for genotyping QC in order to improve the reliability of GWAS results. The impact of discordant genotypes on association analysis results was simulated and could explain, at least in part, the irreproducibility of some GWAS findings when the effect size (i.e. the odds ratio) and the minor allele frequencies are low.  相似文献   

16.
Lewis SN  Nsoesie E  Weeks C  Qiao D  Zhang L 《PloS one》2011,6(11):e27175

Background

Genome wide association studies (GWAS) have proven useful as a method for identifying genetic variations associated with diseases. In this study, we analyzed GWAS data for 61 diseases and phenotypes to elucidate common associations based on single nucleotide polymorphisms (SNP). The study was an expansion on a previous study on identifying disease associations via data from a single GWAS on seven diseases.

Methodology/Principal Findings

Adjustments to the originally reported study included expansion of the SNP dataset using Linkage Disequilibrium (LD) and refinement of the four levels of analysis to encompass SNP, SNP block, gene, and pathway level comparisons. A pair-wise comparison between diseases and phenotypes was performed at each level and the Jaccard similarity index was used to measure the degree of association between two diseases/phenotypes. Disease relatedness networks (DRNs) were used to visualize our results. We saw predominant relatedness between Multiple Sclerosis, type 1 diabetes, and rheumatoid arthritis for the first three levels of analysis. Expected relatedness was also seen between lipid- and blood-related traits.

Conclusions/Significance

The predominant associations between Multiple Sclerosis, type 1 diabetes, and rheumatoid arthritis can be validated by clinical studies. The diseases have been proposed to share a systemic inflammation phenotype that can result in progression of additional diseases in patients with one of these three diseases. We also noticed unexpected relationships between metabolic and neurological diseases at the pathway comparison level. The less significant relationships found between diseases require a more detailed literature review to determine validity of the predictions. The results from this study serve as a first step towards a better understanding of seemingly unrelated diseases and phenotypes with similar symptoms or modes of treatment.  相似文献   

17.
An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype.  相似文献   

18.
Li H 《Human genetics》2012,131(9):1395-1401
Many common human diseases are complex and are expected to be highly heterogeneous, with multiple causative loci and multiple rare and common variants at some of the causative loci contributing to the risk of these diseases. Data from the genome-wide association studies (GWAS) and metadata such as known gene functions and pathways provide the possibility of identifying genetic variants, genes and pathways that are associated with complex phenotypes. Single-marker-based tests have been very successful in identifying thousands of genetic variants for hundreds of complex phenotypes. However, these variants only explain very small percentages of the heritabilities. To account for the locus- and allelic-heterogeneity, gene-based and pathway-based tests can be very useful in the next stage of the analysis of GWAS data. U-statistics, which summarize the genomic similarity between pair of individuals and link the genomic similarity to phenotype similarity, have proved to be very useful for testing the associations between a set of single nucleotide polymorphisms and the phenotypes. Compared to single marker analysis, the advantages afforded by the U-statistics-based methods is large when the number of markers involved is large. We review several formulations of U-statistics in genetic association studies and point out the links of these statistics with other similarity-based tests of genetic association. Finally, potential application of U-statistics in analysis of the next-generation sequencing data and rare variants association studies are discussed.  相似文献   

19.
The genotyping of mother–father–child trios is a very useful tool in disease association studies, as trios eliminate population stratification effects and increase the accuracy of haplotype inference. Unfortunately, the use of trios for association studies may reduce power, since it requires the genotyping of three individuals where only four independent haplotypes are involved. We describe here a method for genotyping a trio using two DNA pools, thus reducing the cost of genotyping trios to that of genotyping two individuals. Furthermore, we present extensions to the method that exploit the linkage disequilibrium structure to compensate for missing data and genotyping errors. We evaluated our method on trios from CEPH pedigree 66 of the Coriell Institute. We demonstrate that the error rates in the genotype calls of the proposed protocol are comparable to those of standard genotyping techniques, although the cost is reduced considerably. The approach described is generic and it can be applied to any genotyping platform that achieves a reasonable precision of allele frequency estimates from pools of two individuals. Using this approach, future trio-based association studies may be able to increase the sample size by 50% for the same cost and thereby increase the power to detect associations.  相似文献   

20.
Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号