首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
We sought to determine the efficiency of the intracellular functional P-gp- and MRP1-mediated pumping of THP into acidic organelles in SiHa cells and etoposide-resistant SiHa/VP16 cells. The expression of both MDR1 and MRP1 genes of SiHa and SiHa/VP16 cells was clearly shown by using RT-PCR. The functional studies of both intracellular functional P-gp- and MRP1-mediated pumping were performed by using THP in a conventional spectrofluorometer, and they demonstrated that SiHa and SiHa/VP16 cells are good models to illustrate the functional role of intracellular P-gp and MRP1 in the transport of free cytosolic drug into acidic organelles. The functional P-gp and MRP1 proteins were identified both on plasma membranes and on intracellular vesicle membranes. Within the limit of experimental error, similar efficiencies in THP transport were observed in the two proteins at both locations in SiHa and SiHa/VP16 cells. The P-gp- and MRP1-mediated pump coefficient (k v a), Michealis-Menten's constant (K V m), and maximal pumping rate (V V max) values of those located on vesicular membranes were 1.87 +/- 0.30 pL x cell-1 x s-1, 1.63 +/- 0.21 microM, and 4.95 +/- 0.45 nM x s-1, respectively. Drug retention inside acidic organelles (C mon V) of SiHa cells was significantly higher than that of SiHa/VP16 cells, perhaps a consequence of slower movement of recycling endosomes and (or) lysosomes to the cell membrane of SiHa cells, leading to distended organelles and cell death. Our results suggest that intracellular P-gp and MRP1 proteins play an important role in the transport of free drug from cytosol to cytoplasmic acidic organelles.  相似文献   

2.
Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.  相似文献   

3.
Yunomae K  Arima H  Hirayama F  Uekama K 《FEBS letters》2003,536(1-3):225-231
We compared the inhibitory effect of various cyclodextrins (CyDs) on P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) function and examined the contribution of cholesterol to the inhibitory effect of 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CyD) on the efflux activity of the function in Caco-2 cell monolayers. Of various CyDs, DM-beta-CyD significantly impaired the efflux activity of P-gp and MRP2. DM-beta-CyD released P-gp and MRP2 from the monolayers in the apical side's transport buffer and decreased the extent of cholesterol as well as P-gp and MRP2 in caveolae of Caco-2 cell monolayers, but not caveolin and flotillin-1. On the other hand, DM-beta-CyD did not change MDR1 and MRP2 mRNA levels. Therefore, these results suggest that the inhibitory effect of DM-beta-CyD on P-gp and MRP2 function, at least in part, could be attributed to the release of these transporters from the apical membranes into the medium as secondary effects through cholesterol-depletion in caveolae after treatment of Caco-2 cell monolayers with DM-beta-CyD.  相似文献   

4.
5.
Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL-Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.  相似文献   

6.
Natural differences in expression and retroviral transduction techniques were used to test the hypothesis that MDR1 P-glycoprotein (P-gp) and MRP1 (multidrug resistance-related protein) contribute to xenobiotic handling by placental trophoblast. RT-PCR and Western blotting in placenta, primary cytotrophoblast cell cultures, and BeWo, JAr, and JEG choriocarcinoma cell lines showed that MRP1 was ubiquitously expressed, whereas MDR1 was absent or minimally expressed in BeWo and JEG cell lines. In syncytiotrophoblast, P-gp was localized predominantly to the microvillous, maternal facing plasma membrane, and MRP1 to the basal, fetal facing plasma membrane. Functional studies showed that cyclosporin A-sensitive accumulation of [3H]vinblastine by cells containing both transport proteins was significantly different from those expressing predominantly MRP1. Retroviral gene transfer of MDR1 to BeWo cells confirmed that this difference was due to the relative expression of MDR1. Therefore, both P-gp and MRP1 contribute to xenobiotic handling by the trophoblast. Localization of P-gp to the microvillous membrane suggests an essential role in preventing xenobiotic accumulation by the syncytiotrophoblast and, therefore, in protecting the fetus. placenta; multidrug resistance; xenobiotic  相似文献   

7.
The multidrug resistance protein MRP2 (ABCC2) acts as an ATP-dependent conjugate export pump in apical membranes of polarized cells and confers multidrug resistance. Purified MRP2 is essential for the detailed functional characterization of this member of the family of ATP-binding cassette (ABC) transporter proteins. In human embryonic kidney cells (HEK293), we have permanently expressed MRP2 containing an additional C-terminal (His)6-tag. Immunoblot and immunofluorescence analyses detected the MRP2-(His)6 overexpressing clones. Isolated membrane vesicles from the MRP2-(His)6-expressing cells were active in ATP-dependent transport of the glutathione S-conjugate leukotriene C4 and were photoaffinity-labelled with 8-azido-[alpha-32P]ATP. MRP2-(His)6 was solubilized from membranes of MRP2-(His)6-cells and purified to homogeneity in a three-step procedure using immobilized metal affinity chromatography, desalting, and immunoaffinity chromatography. The identity of the pure MRP2-(His)6 was verified by MS analysis of tryptic peptides. The purified MRP2-(His)6 glycoprotein was reconstituted into proteoliposomes and showed functional activity as ATPase in a protein-dependent manner with a Km for ATP of 2.1 mM and a Vmax of 25 nmol ADP x mg MRP2-1 x min-1. This ATPase activity was substrate-stimulated by oxidized and reduced glutathione and by S-decyl-glutathione. Future studies using pure MRP2 reconstituted in proteoliposomes should allow further insight into the molecular parameters contributing to MRP2 transport function and to define its intracellular partners for transport and multidrug resistance.  相似文献   

8.
Cholesterol is a key lipid in mediating the enzyme activity or signaling pathway of many proteins on the plasma membrane in mammalian cells. In this report, we demonstrate for the first time that after overexpressing caveolin-1, the plasma membrane cholesterol level was decreased by about 12% and 30% for doxorubicin-sensitive and doxorubicin-resistant Hs578T breast cancer cells, respectively. However, the total cholesterol level in both cell lines was increased by about 10%. By measuring fluorescence and flow cytometry using the fluorescence dyes 1,6-diphenyl-1,3,5-hexatriene and Merocyanine 540, we found that overexpressing caveolin-1 resulted in a similar increase in membrane fluidity and loosening of lipid packing density as cholesterol depletion by 1 mM methyl-beta-cyclodextrin (MbetaCD) or 2-hydroxypropyl-beta-cyclodextrin (HbetaCD). Moreover, we found that the transport activity of P-gp was significantly inhibited by 1 mM MbetaCD or HbetaCD, which is also similar to the inhibitory effect of caveolin-1 overexpression. Our data demonstrate for the first time that the reduction of the plasma membrane cholesterol level induced by overexpressing caveolin-1 may indirectly inhibit P-gp transport activity by increasing plasma membrane fluidity.  相似文献   

9.
The multidrug resistance-associated protein transporter ABCC1 (MRP1) is an integral plasma membrane protein involved in the multidrug resistance phenotype. It actively expels a number of cytotoxic molecules from cells. To gain insight into the modulation of the functional properties of this integral membrane protein by cholesterol, a main component of the lipid bilayer, we used multidrug-resistant GLC4/ADR cells, which overexpress MRP1. Upon altering the plasma membrane cholesterol content of these cells, membrane localization and the activity of MRP1 were analyzed. A detergent-free methodology was used to separate "light" and "heavy" plasma membrane fractions. Our data show that MRP1 was exclusively found in "light" fractions known as L0 phase membrane microdomains, together with 23% of gangliosides GM1 and 40% of caveolin-1. Depletion of the membrane cholesterol level to 40% by treatment with the cholesterol-chelating agent methyl-beta-cyclodextrin did not modify MRP1 activity, as evidenced either by the rate of efflux of pirarubicin or that of glutathione. Further cholesterol depletion below 40% yielded both a partial shift of MRP1 to the high-density fraction and a decrease of its functionality. Taken together, these data suggest that MRP1 functionality depends on its localization in cholesterol-rich membrane microdomains.  相似文献   

10.
MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly complete oxidation of free cholesterol in the plasma membrane of BHK-MRP1 (MRP1-expressing baby hamster kidney) cells did not affect MRP1 localization in lipid rafts or its efflux function, using 5-carboxyfluorescein diacetate as a substrate. Inhibition of cholesterol biosynthesis, using lovastatin in combination with RO 48-8071, an inhibitor of oxidosqualene cyclase, resulted in a shift of MRP1 out of lipid raft fractions, but did not affect MRP1-mediated efflux in Neuro-2a (neuroblastoma) cells. Short-term methyl-β-cyclodextrin treatment was equally effective in removing free cholesterol from Neuro-2a and BHK-MRP1 cells, but affected MRP1 function only in the latter. The kinetics of loss of both MRP1 efflux function and lipid raft association during long-term methyl-β-cyclodextrin treatment did not match the kinetics of free cholesterol removal in both cell lines. Moreover, MRP1 activity was measured in vesicles consisting of membranes isolated from BHK-MRP1 cells using the substrate cysteinyl leukotriene C4 and was not changed when the free cholesterol level of these membranes was either decreased or increased. In conclusion, MRP1 activity is not correlated with the level of free cholesterol or with localization in cholesterol-dependent lipid rafts.  相似文献   

11.
The review highlights the membrane aspect of cholesterol efflux from cell membranes to high density lipoproteins (HDL), an initial stage of reverse cholesterol transport to liver. In addition to traditional viewpoints considering cholesterol transport as the step of sequential lipoprotein transformation, which involves blood plasma apoproteins and proteins transporters, employment of proteomic approaches has shown the active role of cell plasma membranes as cholesterol donors and plasma membrane bound proteins in cholesterol transport. These include ATP-binding ABC-A1 transporter and membrane receptor SR-B1. There is experimental and clinical evidence that impairment of genes encoding these proteins cause impairments of reverse cholesterol transport (e.g. Tangier disease and genetic manipulations with experimental animals.) Although precise mechanism involving these membrane proteins remains unknown it is suggested that ABC-AI with free plasma apoA1 facilitates the efflux of membrane phospholipids and formation of their complex with apoAI. This complex accepts membrane cholesterol, with simultaneous formation of a full HDL particle. In certain cells there is correlation between cholesterol efflux into HDL and expression of SR-BI, which reversibly binds to HDL. This receptor protein may influence molecular organization of membrane phospholipids and cholesterol, facilitating cholesterol efflux. The review also deals with properties of ABC-A1 and SR-B1, putative mechanisms of their effects, the role of these proteins in reverse cholesterol transport and their functional coupling to the phospholipid matrix of biomembranes.  相似文献   

12.
In situ localization of P-glycoprotein (ABCB1) in human and rat brain.   总被引:6,自引:0,他引:6  
Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellularly, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level.  相似文献   

13.
This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. 4 Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.  相似文献   

14.
Multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette superfamily. Using the energy provided by ATP hydrolysis, it transports a broad spectrum of substrates across the plasma membrane, including hormones, leukotriene C(4), bile salts, and anti-cancer drugs. Recent works have suggested that P-glycoprotein is associated to cholesterol and sphingolipid-rich membrane microdomains and that cholesterol upregulates its ATPase and drug transport activities. Confocal microscopy experiments and Triton X-100 extraction of detergent-resistant membranes provide evidence that MRP1 is not located in raft-like structures and that its activity is downregulated by cholesterol. The data are discussed in terms of cholesterol-protein interaction and topology.  相似文献   

15.
16.
In polarized cells, the multidrug resistance protein MRP2 is localized in the apical plasma membrane, whereas MRP1, another multidrug resistance protein (MRP) family member, is localized in the basolateral membrane. MRP1 and MRP2 are thought to contain an N-terminal region of five transmembrane segments (TMD(0)) coupled to 2 times six transmembrane segments via an intracellular loop (L(0)). We previously demonstrated for MRP1 that a mutant lacking TMD(0) but still containing L(0), called L(0)DeltaMRP1, was functional and routed to the lateral plasma membrane. To investigate the role of the TMD(0)L(0) region of MRP2 in routing to the apical membrane, we generated mutants similar to those made for MRP1. In contrast to L(0)DeltaMRP1, L(0)DeltaMRP2 was associated with an intracellular compartment, most likely endosomes. Co-expression with TMD(0), however, resulted in apical localization of L(0)DeltaMRP2 and transport activity. Uptake experiments with vesicles containing L(0)DeltaMRP2 demonstrated that the molecule is able to transport LTC(4). An MRP2 mutant without TMD(0)L(0), DeltaMRP2, was only core-glycosylated and localized intracellularly. Co-expression of DeltaMRP2 with TMD(0)L(0) resulted in an increased protein level of DeltaMRP2, full glycosylation of the protein, routing to the apical membrane, and transport activity. Our results suggest that the TMD(0) region is required for routing to or stable association with the apical membrane.  相似文献   

17.
The ATP binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), transports a broad spectrum of conjugated and unconjugated compounds, including natural product chemotherapeutic agents. In this study, we have investigated the importance of the COOH-terminal region of MRP1 for transport activity and basolateral plasma membrane trafficking. The COOH-terminal regions of some ABCC proteins have been implicated in protein trafficking, but the function of this region of MRP1 has not been defined. In contrast to results obtained with other ABCC proteins, we found that the COOH-proximal 30 amino acids of MRP1 can be removed without affecting trafficking to basolateral membranes. However, the truncated protein is inactive. Furthermore, removal of as few as 4 COOH-terminal amino acids profoundly decreases transport activity. Although amino acid sequence conservation of the COOH-terminal regions of ABC proteins is low, secondary structure predictions indicate that they consist of a broadly conserved helix-sheet-sheet-helix-helix structure. Consistent with a conservation of secondary and tertiary structure, MRP1 hybrids containing the COOH-terminal regions of either the homologous MRP2 or the distantly related P-glycoprotein were fully active and trafficked normally. Using mutated proteins, we have identified structural elements containing five conserved hydrophobic amino acids that are required for activity. We show that these are important for binding and hydrolysis of ATP by nucleotide binding domain 2. Based on crystal structures of several ABC proteins, we suggest that the conserved amino acids may stabilize a helical bundle formed by the COOH-terminal three helices and may contribute to interactions between the COOH-terminal region and the protein's two nucleotide binding domains.  相似文献   

18.
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [3H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [3H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [125I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.  相似文献   

19.

Background

Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. Its effect on the expression and activity of drug-metabolizing and transporter proteins has not been studied yet.

Methodology/Principal Findings

Expression and activity of P-glycoprotein (P-gp), Multidrug resistance-associated protein 2 (MRP2), Cytochrome P450 3A4 (CYP3A4), and Glutathione S-transferase (GST) were evaluated in HepG2 cells after treatment with BZL. Expression was estimated by immunoblotting and real time PCR. P-gp and MRP2 activities were estimated using model substrates rhodamine 123 and dinitrophenyl-S-glutathione (DNP-SG), respectively. CYP3A4 and GST activities were evaluated through their abilities to convert proluciferin into luciferin and 1-chloro-2,4-dinitrobenzene into DNP-SG, respectively. BZL (200 µM) increased the expression (protein and mRNA) of P-gp, MRP2, CYP3A4, and GSTπ class. A concomitant enhancement of activity was observed for all these proteins, except for CYP3A4, which exhibited a decreased activity. To elucidate if pregnane X receptor (PXR) mediates BZL response, its expression was knocked down with a specific siRNA. In this condition, the effect of BZL on P-gp, MRP2, CYP3A4, and GSTπ protein up-regulation was completely abolished. Consistent with this, BZL was able to activate PXR, as detected by reporter gene assay. Additional studies, using transporter inhibitors and P-gp-knock down cells, demonstrated that P-gp is involved in BZL extrusion. Pre-treatment of HepG2 cells with BZL increased its own efflux, as a consequence of P-gp up-regulation.

Conclusions/Significance

Modifications in the activity of biotransformation and transport systems by BZL may alter the pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself.  相似文献   

20.
YCF1 is a yeast vacuole membrane transporter involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors. MRP1 contributes to multidrug resistance (MDR) in tumor cells. MRP1 and YCF1 have extensive amino acid sequence homology (63% amino acid similarity). We expressed MRP1 or YCF1 in insect cell membranes and compared their functions to know more about their structure-function relationships. YCF1 and MRP1 with His epitopes were expressed in Sf21 insect cells; both of them in the plasma membrane. The ATP-dependent transport of [(3)H]LTC(4) in Sf/YCF1-His vesicles was osmotically sensitive and showed saturable kinetics with an apparent K(m) of 758 nM for LTC(4) and 94 microM for ATP which were similar to those in yeast cells. The K(m) of YCF1 for LTC(4) (758 nM) was sevenfold higher than that of MRP1 (108 nM). MK-571 and ONO-1078, reversing agents for MRP1-mediated MDR, considerably inhibited the transport of LTC(4) by both YCF1 and MRP1. However, PAK-104P, a pyridine analog that reverses MDR associated with P-gp and MRP1, inhibited the transporting activity of MRP1 stronger than that of YCF1. KE1, another MDR reversing agent, moderately inhibited the transport of LTC(4) by MRP1 but not that of YCF1. In conclusion, we successfully expressed yeast YCF1 in Sf21 insect cells and found that the localization of the protein was different from that in yeast. The function of YCF1 in Sf21 insect cells was similar but not identical to that of MRP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号