首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two Drosophila species, D. buzzatti and D. aldrichi, coexist on several species of Opuntia cacti in Australia, primarily on O. tomentosa and O. streptacantha in the northern part of the cactus distribution, and on O. stricta in the south. Thorax length of field-collected adults was less, and the variance in length greater, than that for flies reared on simulated rots in the laboratory, indicating that these species are affected by crowding in nature. A larval performance index, measured on simulated cactus rots at low, moderate and high densities in single-species cultures, and at moderate and high densities in mixed-species cultures, was used to compare the relative intensity of intra- and interspecific competition at the same total larval density per 5 g necrotic cactus. Larval performance of both fly species was greatest on O. streptacantha, intermediate on O. tomentosa, and least on O. stricta in both single-species and mixed-species cultures. On O. stricta, the performances of D. aldrichi and D. buzzatii were not different when in single-species cultures, but that of D. aldrichi decreased significantly in mixed-species cultures. On the other two cactus species, the performances of D. aldrichi and D. buzzattii were not different in mixed-species cultures. The order of preferences by adult females for the cacti differed from that for larval performance, with females of both species prefering O. stricta. Analysis of microbial numbers growing on the cacti showed little difference among cacti at the rot age used for testing adult preference, but later growth was greater on O. tomentosa and O. streptacantha, the cacti that best supported larvae. Differential larval performance on O. stricta may contribute to the rare presence of D. aldrichi in the southern part of the cactus distribution, while the superior quality of O. tomentosa and O. streptacantha (larger rot size and higher microbial concentration) may reduce competition and facilitate cocxistence of the fly species in the north.  相似文献   

2.
This study examined the effects of the native cactus moth borer, Melitara prodenialis, and the invasive cactus moth borer, Cactoblastis cactorum, on two common cactus species, Opuntia stricta and O. humifusa at coastal and inland locations in central Florida. Opuntia stricta were present only at coastal sites and O. humifusa were present at coastal and inland sites. Throughout the duration of the study, coastal plants were subject to damage solely by C. cactorum and inland plants solely by M. prodenialis. Results showed marginally significantly higher numbers of eggsticks on O. stricta than O. humifusa and significantly higher numbers at coastal sites than at inland sites. There was also significantly higher moth damage on O. stricta than O. humifusa and at coastal sites than inland sites, but not significantly so. However, there was a higher level of plant mortality for O. humifusa than for O. stricta and a significantly higher level of cactus mortality at inland sites when compared to coastal sites. This increased mortality may be due to increased attack by true bugs, Chelinidea vittiger, and by Dactylopius sp., combined with attack by M. prodenialis. Inland plants also tended to be smaller than coastal plants and could be more susceptible to the combined effects of all insects. Further long-term research on coastal cactus survival when attacked and unattacked by Cactoblastis is necessary to fully determine the effects of this moth on Opuntia survival.  相似文献   

3.
We evaluated the role that endangered species reintroduction efforts can play in the larger context of ecosystem restoration. To do so, we examined interactions between endangered giant tortoises (Geochelone nigra hoodensis), currently being reintroduced to Isla Española, Galápagos, and an arboreal cactus (Opuntia megasperma var. megasperma), which is itself endangered and a keystone resource for many animals on the island. We collected information on spatial patterns of occurrence of cacti, tortoises, and woody vegetation and compared recruitment of juvenile cacti in areas occupied versus unoccupied by tortoises. Reintroduced tortoises appeared to suppress cactus recruitment near the few remaining adult cacti at the study site, but facilitate it at longer distances, with tortoise–cactus interactions mediated by the presence of woody vegetation, which likely alters tortoise movements and thereby patterns of cactus seed dispersal. The net effect of tortoises on cacti appeared to be positive insofar as tortoise presence was associated with greater recruitment of juveniles into cactus populations. Our study provides support for reintroducing endangered reptiles and other animals to aid ecosystem restoration in areas where they might once have played an important role in grazing upon and dispersing plants.  相似文献   

4.
A survey was made of the yeast communities isolated from necrotic tissue of 4 species of prickly-pear cacti (Opuntia stricta, O. tomentosa, O. monacantha, andO. streptacantha) which have colonized in Australia. Yeast communities were sampled from a number of localities and at different times. Cactus specific yeasts accounted for 80% of the total isolates, and the 3 most common species contributed 63% of the total. Comparisons of the species compositions of the yeast communities indicated that the differences among communities were greater betweenOpuntia species than between different localities within a single cactus species, and also that differences between years were greater than average differences between localities within years. Multivariate statistical tests of association between yeast community and physical features of rots indicated that temperature, pH, and age of rot all exerted some influence on the structure of the yeast community. Similar analyses involvingDrosophila species inhabiting these cactus rots suggested the existence of complex associations betweenDrosophila community, yeast community, and physical and chemical attributes of the cactus necroses.  相似文献   

5.
Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant–insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade‐off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for Ostricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of Ostricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size‐dependent, this suggests that Ostricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual reproduction potential.  相似文献   

6.
Summary Two small Sonoran Desert cacti, Mammillaria microcarpa and Echinocereus englemannii, are commonly found beneath canopies of the larger, tree-like cactus Opuntia fulgida. The mechanism leading to this distribution pattern is incidental to the mode of reproduction in O. fulgida. Opuntia fulgida propagates by means of easily-detached, spine-covered stem joints that accumulate beneath the parent plant. These accumulations of spines apparently deter mammalian herbivores that otherwise consume succulent tissues of the smaller cacti. Such incidental effects are little studied, but they may contribute substantially to structure within plant communities.  相似文献   

7.
Giant tortoises were once a megafaunal element widespread in tropical and subtropical ecosystems. The role of giant tortoises as herbivores and seed dispersers, however, is poorly known. We evaluated tortoise impacts on Opuntia cactus (Cactaceae) in the Galápagos Islands, one of the last areas where giant tortoises remain extant, where the cactus is a keystone resource for many animals. We contrasted cactus populations immediately inside and outside natural habitats where tortoises had been held captive for several decades. Through browsing primarily and trampling secondarily tortoises strongly reduced densities of small (0.5–1.5 m high) cacti, especially near adult cacti, and thereby reduced densities of cacti in larger size classes. Tortoises also caused a shift from vegetative to sexual modes of reproduction in cacti. We conclude that giant tortoises promote a sparse and scattered distribution in Opuntia cactus and its associated biota in the Galápagos Islands.  相似文献   

8.
Sophie Petit 《Biotropica》1997,29(2):214-223
Two bat species, Leptonyrteris curasoae and Glossophaga longirostris, are the principal pollinators of at least two of the three species of columnar cacti that grow on the semiarid island of Curaçao, Netherlands Antilles. I examined the importance of the cacti in the diets of the bats and found that 85–91 percent of their diet samples contained cactus pollen and seeds. At least 43 percent of the samples from each species contained cactus pollen andlor seeds exclusively. Leptonycteris curasoae consumes nectar and pollen of Ceiba pentandra and Agave spp. at the beginning of the dry season and G. longirostris also consumes a few other plant products in the wet season, but both bat species depend nutritionally on cacti. Female bats give birth to one pup per year, and the periods of parturition and lactation in each species correspond to peaks in the reproductive phenology of the two most abundant columnar cactus species. From personal observations and a review of the literature, I determined that bats were unlikely to fly to the mainland to feed, although L. curasoae may do so. I conclude that the interdependence of bats and cacti is suggestive of coevolution, and that columnar cacti are critical for the survival and persistence of nectar-feeding bats on Curaçao.  相似文献   

9.
The environmental distribution, habitat segregation, and vegetation associates of the columnar cacti Carnegiea gigantea, Stenocereus thurberi, and Lophocereus schottii were examined in Organ Pipe Cactus National Monument, Arizona. Three primary environmental gradients were identified with principal components analysis of environmental data: soil texture, elevation/nutrients, and xericness (based on slope aspect and angle). Environmental influents of spatial variation in density were modeled with ordinary least squares regression analysis, and common associates were identified with two-way indicator species analysis for each cactus. Of the three cacti, Carnegiea gigantea occurred over the broadest ecological range of habitats, but was densest on coarse, granitically derived alluvial soils of flat upper bajadas and basin floors, where it was associated with Larrea tridentata, Ambrosia deltoidea, and Opuntia fulgida. Stenocereus thurberi reached its maximum densities on coarse sandy soils of steep, south-facing granitic slopes, with Encelia farinosa, Jatropha cuneata, and Opuntia bigelovii as associates. Lophocereus schottii was restricted to very coarse, granitically derived alluvial soils in the southern part of the monument, where it occurred along wash banks with Beloperone californica, Hymenoclea salsola, Acacia greggii, and Opuntia arbuscula.Abbreviations DCA Detrended correspondence analysis - OPCNM Organ Pipe Cactus National Monument - OLS Ordinary least squares - PCA Principal components analysis - RA Reciprocal averaging - TWINSPAN Two-way indicator species analysis  相似文献   

10.
The microbial structure within, between, and over time in decaying cladodes of the common prickly pearOpuntia stricta was studied at each of two separate localities. In general, the effective number of yeast species and yeast species diversity increased as the rot aged to the observed maximum time of 4 weeks. Yeast heterogeneity at the two localities differed in the mode of environmental influence, with spatial variability (among rots) most important at one and temporal variability (within rots over time) most important at the other. Differences in cactus density and quality (age) are most likely determinants of the differences in yeast community structure.  相似文献   

11.
Abstract. Pattern analysis and association analysis showed that recruitment of the giant columnar cactus Neobuxbaumia tetetzo in the semi-arid valley of Zapotitlán is largely limited to areas beneath the canopies of perennial shrubs, acting as nurse plants. Chi-square and Haberman tests revealed that young cacti were more frequently found beneath canopies of leguminous shrubs, especially Mimosa luisana, than were older cacti. Segregation analysis indicated a positive association (= negative segregation) of young cacti and M. luisana canopies, but older cacti were randomly distributed with respect to M. luisana. This, and the height class distributions of cacti associated withM luisana or not, suggested the replacement of M. luisana by N. tetetzo. Mimosa luisana plants in association withiV. tetetzo had greater amounts of dead basal area thanM luisana lacking associated N tetetzo. This suggested competition from JV. tetetzo promotes the replacement process. The roots of N tetetzo are ≤ 30 cm deep. Interception of soil water before penetration to deeper roots of M luisana may be the mode of competition between the two species.  相似文献   

12.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

13.
Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), the poster child of biological control, has recently invaded the United States. The first US record was at Big Pine Key, Florida, in 1989. Since then it has moved rapidly northward into South Carolina. Fears are high that it will disperse, either on its own, or with human help, into the US desert southwest and Mexico. There are at least 31 species of prickly pear in the US that are likely to be attacked by Cactoblastis and 56 species in Mexico. As well as the threat to wild cacti, there are over 250,000 ha of Opuntia plantations in Mexico that support a thriving agricultural industry, most of which is centered on harvesting fruits or pads. Possible control measures include classical biological control using parasitoids or pathogens from South America, chemical control or F1 sterility, as has been used successfully for the codling moth. However, most of these options appear to have insurmountable difficulties. Classical biological control raises the fear of further non-target effects of natural enemies on native cactus herbivores. Chemical control has potential non-target effects on other (rare) insects and is expensive. F1 sterility is also expensive and is not self-sustaining, requiring considerable and continual human input. Nevertheless, research on control options is vital as is further work on the rate of spread and impact of Cactoblastis in the United States Southeast, so that we can be as well prepared as possible to deal with this threat when it arrives in Arizona, California, and Mexico.  相似文献   

14.
The interaction between the moth, Cactoblastis cactorum, and the cactus, Opuntia stricta, is used as a model to examine the question of whether the CO2 sense of a herbivorous insect can detect the CO2 gradients associated with a plant's metabolic activity. Both the anatomical and the electrophysiological characteristics of CO2-sensitive receptor neurons in C. cactorum indicate an adaptation to the detection of small fluctuations around the atmospheric background. Evidence is provided that further rises in background will impair the function of the sensory organ. In the habitat of the plant, during the diurnal window of the moth's activity, two types of CO2 gradients occur that are detectable by the moth's sensors. The first gradient, associated with soil respiration, is vertical and extends from the soil surface to an altitude of approximately 1 m. Its magnitude is well above the detectability limit of the sensors. The notion that this gradient provides, to a flying insect, a cue for the maintenance of a flight altitude favourable for host detection is supported by field observations of behaviour. The second gradient, associated with CO2 fixation by the plant, extends from the surfaces of photosynthetic organs (cladodes) over a boundary layer distance of approximately 5 mm. Again, its magnitude is well above the detectability limit. The notion that this gradient provides, to a walking insect, a cue to the physiological condition of the plant is supported by the observation that females of C. cactorum, prior to oviposition, actively probe the plant surface with their CO2 sensors. In a simulation of probing, pronounced responses of the sensors to the CO2-fixing capacity of O. stricta are observed. We propose that by probing the boundary layer, females of C. cactorum can detect the healthiest, most active O. stricta cladodes, accounting for earlier observations that the most vigorous plants attract the greatest density of egg sticks.  相似文献   

15.
Second chromosome inversions and genotypic frequencies at seven allozyme loci were determined in a natural population of the cactophilic species Drosophila buzzatii that uses as breeding sites the necrotic cladodes of the prickly pear Opuntia quimilo and the rotting stems of cardón, Trichocereus terschekii. Different processes govern the evolutionary fate of inversion and allozyme polymorphisms. A pattern of heterotic balance for inversions seems to be acting uniformly in each breeding site and could depend on different regimes of density‐dependent selection within cactus hosts. Patterns of variation of allozymes revealed significant heterogeneity in allele frequencies for Esterase‐1 (Est‐1) among O. quimilo rots and Aldehyde oxidase (Aldox) and Xanthine dehydrogenase (Xdh) among T. terschekii substrates and showed gene‐cactus effects only for Esterase‐2 (Est‐2). Consistent and significant excesses of homozygotes were detected at both the within‐rot and in the total population levels that could be accounted for by diversifying selection among individual breeding sites.  相似文献   

16.
The extent of host-specific genetic variation for two life-history traits, egg to adult developmental time and viability, and one morphological trait closely tied to fitness, adult thorax size, was exposed by employing a nested half-sib/full-sib breeding design with Baja and mainland populations of Drosophila mojavensis recently extracted from nature. This study was motivated by the presence of substantial variation in life histories among populations of D. mojavensis that use the fermenting tissues of particular species of columnar cacti for feeding and breeding in the Sonoran Desert. Full-sib progeny from all sire-dam crosses were split into cultures of agria cactus, Stenocereus gummosus, and organ pipe cactus, S. thurberi, to examine patterns of genotype-by-environment interaction for these fitness components. Baja flies expressed shorter egg-to-adult developmental times, higher viabilities, and smaller body sizes than mainland flies consistent with previous studies. Significant sire and dam components of variance were exposed for developmental time and thorax size. Genotype-by-environment interactions were significant at the level of dams for developmental time and nearly significant for viability (P = 0.09). Narrow- and broad-sense heritabilities were influenced by host cactus, sex, and population. No strong pattern of genetic correlation emerged among fitness components suggesting that host-range expansion has not been accompanied by formation of coadapted life histories, yet the ability to estimate genetic correlations and their standard errors was compromised by the unbalanced nature of the data set. Genetic correlations in performance across cacti were slightly positive, evidence for ecological generalism among populations explaining the observed pattern of multiple host cactus use within the species range of D. mojavensis.  相似文献   

17.
Variation in plant performance between microhabitats is usually attributed to direct mechanisms, such as plant physiological tolerances or competitive interactions. However, indirect mechanisms, such as differences in herbivore pressure mediated by microhabitat differences, could create the same pattern of variation. In this study, we investigated the effect of insect herbivore pressure on the growth of the grassland cactus Opuntia fragilis under different regimes of grassland canopy cover. Our purpose was to establish the extent to which canopy cover plays a direct, competitive role versus an indirect, mediatory role in cactus growth. We manipulated aboveground microhabitat, specifically the cover of adjacent grasses. The three treatments were: (1) open canopy, with grass pinned down away from the cactus; (2) shaded canopy, with a partial mesh cage staked over the cactus; and (3) ambient grass canopy. We measured seasonal plant growth and recorded changes in insect herbivore occurrence and damage in relation to cover. Cactus growth, defined as the change in number of live cladodes, was higher in the open than under either treatment where the plant was more shaded (P<0.05). However, allocation to new growth, measured as the proportion of new segments (cladodes) in a patch, did not differ among cover treatments. Thus, the hypothesis that physiological constraints, or competition for light, limited cactus performance in grass is rejected. Instead, we found that both cladode mortality, caused by the larvae of a cactus moth borer (Melitara dentata), and occurrence of the moth were lower in the open microhabitat than in either shaded microhabitat. Thus, higher net growth in the open, unshaded treatment, rather than representing a release from competition for light with grasses, was better explained as an indirect effect of grass cover on the activity and impact of the cactus moth. These results show that indirect effects can lead to a misinterpretation of experimental data on direct effects. These data also contribute to an improved understanding of mixed results in the biological control of weedy cacti. Clearly, future evaluations of the relative importance of physiology, competition, and insect herbivory in plant performance must be environmentally explicit.  相似文献   

18.
Hylocereus undatus, which is native to tropical forests experiencing moderate temperatures, would not be expected to tolerate the extremely high temperatures that can be tolerated by cacti native to deserts. Nevertheless, total daily net CO2 uptake by this hemiepiphytic cactus, which is widely cultivated for its fruits, was optimal at day/night air temperatures of 30/20°C, temperatures that are higher than those optimal for daily net CO2 uptake by cacti native to arid and semiarid areas. Exposure to 35/25°C for 30 weeks led to lower net CO2 uptake than at 10 weeks; exposure to 40/30°C led to considerable necrosis visible on the stems at 6 weeks and nearly complete browning of the stems by 19 weeks. Dry mass gain over 31 weeks was greatest for plants at 30/20°C, with root growth being especially noteworthy and root dry mass gain representing an increasing percentage of plant dry mass gain as day/night air temperatures were increased. Viability of chlorenchyma cells, assayed by the uptake of the vital stain neutral red into the central vacuoles, was decreased 50 percent by a one‐hour treatment at 55°C compared with an average of 64°C for 18 species of cacti native to deserts. The lower high‐temperature tolerance for H. undatus reflected its low high‐temperature acclimation of only 1.4°C as growth temperatures were raised by 10°C compared with an average acclimation of 5.3°C for the other 18 species of cacti. Thus, this tropical hemiepiphytic cactus is not adapted to day/night air temperatures above ca 40/30°C, although its net CO2 uptake is optimal at the relatively high day/night air temperatures of 30/20°C.  相似文献   

19.
Franz Essl  Johannes Kobler 《Flora》2009,204(7):485-494
In this paper, we analyse the patterns and determinants of cacti invasion in 22 European countries. We compiled a checklist for each country. Cacti were classified for each country according to their invasion status as casuals, locally established (1–5 localities of small population size) and widely established (>5 localities of considerable population size).We used generalised linear models (GLM) from the Poisson family with a log-link function and a set of seven country-specific explanatory variables to account for geographical, climatic, habitat-related and economic determinants to test which features of the recipient area determine invasion success and if distribution patterns of species at different invasion stages are governed by the same interplay of explanatory variables. Separate models were fitted with the same predictor variables for casual, locally established, widely established and all cacti. Further, we analysed the temporal invasion trend, and tested if niche breadth (expressed as the number of habitat types colonized) is influenced by the range size (measured as the number of countries invaded). Finally, we reviewed the consequences of cacti invasion for nature conservation.In total, 26 cacti species have been recorded in Europe. Ten species are more widespread and occur in at least three countries, Opuntia humifusa (six countries) being the most widespread species. The country with most cacti is Spain (21 species), whereas in 13 countries no cactus species have been recorded. By far the most important genus is Opuntia with 20 alien species. The temporal invasion pattern shows an exponential increase of the cumulative number of invasion events, increasing from three (1801–50) to nine (1951–2000) invasion events over a 50-year period.Regardless of the invasion stage, the factor explaining most of the variance in the models is the presence of the Mediterranean biogeographic region, and a significant positive effect of the country size on species numbers was identified.Considering the invasion stage, some interesting deviations in the models can be observed. Invasion of casual cacti is only influenced by the presence of the Mediterranean biogeographic region. For locally established cacti, precipitation is negatively correlated with the invasion rate, and the presence of the Alpine biogeographic region is positively correlated; the latter is due the local occurrence of few hardy cacti (Opuntia phaeacantha, O. humifusa) in low-lying valleys of the Alps. As all widely established cactus species are restricted to the Mediterranean region, only this factor was included in the model.All cacti are confined to dry, open habitats on acid siliceous bedrock. Thus, the predominant habitats invaded are rock vegetation, dry grassland, open Mediterranean scrub and dry ruderal habitats. The niche breadth of cacti increases with the numbers of countries colonized. Further, the niche breadth of cacti exhibits a geographic gradient towards the Mediterranean region.Until the 19th century, the dominant pathway of invasion was agriculture, as some cactus species had been introduced for the production of forage and fruits. However, in the last decades horticulture and deliberate planting in the wild have become the dominant pathways.The invasion of cacti in natural and semi-natural habitats in the Mediterranean region changes habitat structure and species composition. However, dense and extensive stands of cacti are restricted to few species (e.g. Opuntia ficus-indica).  相似文献   

20.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号