首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RecA is a DNA-dependent ATPase and mediates homologous recombination by first forming a filament on a single-stranded (ss) DNA. RecA binds preferentially to TGG repeat sequence, which resembles the recombination hot spot Chi (5′-GCTGGTGG-3′) and is the most frequent pattern (GTG) of the codon usage in Escherichia coli. Because of the highly dynamic nature of RecA filament formation, which consists of filament nucleation, growth and shrinkage, we need experimental approaches that can resolve each of these processes separately to gain detailed insights into the molecular mechanism of sequence preference. By using a single-molecule fluorescence assay, we examined the effect of sequence on individual stages of nucleation, monomer binding and dissociation. We found that RecA does not recognize the Chi sequence as a nucleation site. In contrast, we observed that it is the reduced monomer dissociation that mainly determines the high filament stability on TGG repeats. This sequence dependence of monomer dissociation is well-correlated with that of ATP hydrolysis, suggesting that DNA sequence dictates filament stability through modulation of ATP hydrolysis.  相似文献   

2.
The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1–2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000–2000 nucleotides downstream (5′ → 3′) of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5′-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks.  相似文献   

3.
Homologous recombination occurs especially frequently near special chromosomal sites called hotspots. In Escherichia coli, Chi hotspots control RecBCD enzyme, a protein machine essential for the major pathway of DNA break-repair and recombination. RecBCD generates recombinogenic single-stranded DNA ends by unwinding DNA and cutting it a few nucleotides to the 3′ side of 5′ GCTGGTGG 3′, the sequence historically equated with Chi. To test if sequence context affects Chi activity, we deep-sequenced the products of a DNA library containing 10 random base-pairs on each side of the Chi sequence and cut by purified RecBCD. We found strongly enhanced cutting at Chi with certain preferred sequences, such as A or G at nucleotides 4–7, on the 3′ flank of the Chi octamer. These sequences also strongly increased Chi hotspot activity in E. coli cells. Our combined enzymatic and genetic results redefine the Chi hotspot sequence, implicate the nuclease domain in Chi recognition, indicate that nicking of one strand at Chi is RecBCD''s biologically important reaction in living cells, and enable more precise analysis of Chi''s role in recombination and genome evolution.  相似文献   

4.
Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5′ phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5′-dTdCdA-3′ but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5′-dTdCdA-3′, which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA.  相似文献   

5.
Bacillus subtilis RecN appears to be an early detector of breaks in double-stranded DNA. In vivo, RecN forms discrete nucleoid-associated structures and in vitro exhibits Mg2+-dependent single-stranded (ss) DNA binding and ssDNA-dependent ATPase activities. In the presence of ATP or ADP, RecN assembles to form large networks with ssDNA molecules (designated complexes CII and CIII) that involve ATP binding and requires a 3′-OH at the end of ssDNA molecule. Addition of dATP–RecA complexes dissociates RecN from these networks, but this is not observed following addition of an ssDNA binding protein. Apparently, ATP modulates the RecN–ssDNA complex for binding to ssDNA extensions and, in vivo, RecN–ATP bound to 3′-ssDNA might sequester ssDNA ends within complexes that protect the ssDNA while the RecA accessory proteins recruit RecA. With the association of RecA to ssDNA, RecN would dissociate from the DNA end facilitating the subsequent steps in DNA repair.  相似文献   

6.
Genetic and cytological evidences suggest that Bacillus subtilis RecN acts prior to and after end-processing of DNA double-strand ends via homologous recombination, appears to participate in the assembly of a DNA repair centre and interacts with incoming single-stranded (ss) DNA during natural transformation. We have determined the architecture of RecN–ssDNA complexes by atomic force microscopy (AFM). ATP induces changes in the architecture of the RecN–ssDNA complexes and stimulates inter-complex assembly, thereby increasing the local concentration of DNA ends. The large CII and CIII complexes formed are insensitive to SsbA (counterpart of Escherichia coli SSB or eukaryotic RPA protein) addition, but RecA induces dislodging of RecN from the overhangs of duplex DNA molecules. Reciprocally, in the presence of RecN, RecA does not form large RecA–DNA networks. Based on these results, we hypothesize that in the presence of ATP, RecN tethers the 3′-ssDNA ends, and facilitates the access of RecA to the high local concentration of DNA ends. Then, the resulting RecA nucleoprotein filaments, on different ssDNA segments, might promote the simultaneous genome-wide homology search.  相似文献   

7.
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5′ overhangs relative to the 3′ overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having ≥18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3′ overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5′ overhangs, it could also catalyze significant unwinding of substrates containing 3′ overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5′ → 3′ and weak 3′ → 5′ unwinding activities. The extent of unwinding of Y-shaped DNA structures was ∼3-fold lower compared with duplexes with 5′ overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.  相似文献   

8.
RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with its biologically most relevant substrate, long ssDNA molecules. We find that RecA ATPase activity is required for the formation of long continuous filaments on ssDNA. These filaments both nucleate and extend with a multimeric unit as indicated by the Hill coefficient of 5.4 for filament nucleation. Disassembly rates of RecA from ssDNA decrease with applied stretching force, corresponding to a mechanism where protein-induced stretching of the ssDNA aids in the disassembly. Finally, we show that RecA–ssDNA filaments can reversibly interconvert between an extended, ATP-bound, and a compressed, ADP-bound state. Taken together, our results demonstrate that ATP hydrolysis has a major influence on the structure and state of RecA filaments on ssDNA.  相似文献   

9.
RecBCD is an ATP-dependent helicase and exonuclease which generates 3′ single-stranded DNA (ssDNA) ends used by RecA for homologous recombination. The exonuclease activity is altered when RecBCD encounters a Chi sequence (5′-GCTGGTGG-3′) in double-stranded DNA (ds DNA), an event critical to the generation of the 3′-ssDNA. This study tests the effect of ssDNA oligonucleotides having a Chi sequence (Chi+) or a single base change that abolishes the Chi sequence (Chio), on the enzymatic activities of RecBCD. Our results show that a 14 and a 20mer with Chi+ in the center of the molecule inhibit the exonuclease and helicase activities of RecBCD to a greater extent than the corresponding Chio oligonucleotides. Oligonucleotides with the Chi sequence at one end, or the Chi sequence alone in an 8mer, failed to show Chi-specific inhibition of RecBCD. Thus, Chi recognition requires that Chi be flanked by DNA at either end. Further experiments indicated that the oligonucleotides inhibit RecBCD from binding to its dsDNA substrate. These results suggest that a specific site for Chi recognition exists on RecBCD, which binds Chi with greater affinity than a non-Chi sequence and is probably adjacent to non-specific DNA binding sites.  相似文献   

10.
We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaBBA) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaBBA displayed distinct enzymatic and kinetic properties. DnaBBA has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5′→3′ DNA helicase activity. The stimulation of ATPase activity appeared to be a function of the length of the ssDNA template rather than of ssDNA binding alone. The highest specific activity was observed with M13mp19 ssDNA. The results presented here indicated that the ATPase activity of DnaBBA was coupled to its migration on an ssDNA template rather than to DNA binding alone. It did not require nucleotide to bind ssDNA. DnaBBA demonstrated a strong DNA helicase activity that required ATP or dATP. Therefore, DnaBBA has an attenuated ATPase activity and a highly active DNA helicase activity. Based on the ratio of DNA helicase and ATPase activities, DnaBBA is highly efficient in DNA unwinding and its coupling to ATP consumption.  相似文献   

11.
The mutation of Pro67 to Trp (P67W) in the Escherichia coli RecA protein results in reduced recombination and constitutive coprotease phenotypes. We examined the biochemical properties of this mutant in an effort to understand these altered behaviors. We find that RecA P67W protein can access single-stranded DNA (ssDNA) binding sites within regions of secondary structure more effectively than wild-type protein, and binding to duplex DNA is both faster and more extensive as well. This mutant is also more effective than wild-type RecA protein in displacing SSB protein from ssDNA. An enhancement in SSB protein displacement has been shown previously for RecA441, RecA730, and RecA803 proteins, and similarly, this improved ability to displace SSB protein for RecA P67W protein correlates with an increased rate of association with ssDNA. As for the aforementioned mutant RecA proteins, we expect that this enhanced activity will allow RecA P67W protein to bind ssDNA naturally occurring in undamaged cells and to constitutively induce the SOS response. The DNA strand exchange activity of RecA P67W protein is also altered. Although the rate of duplex DNA uptake into joint molecules is increased compared to that of wild-type RecA protein, the resolution to the nicked circular dsDNA product is reduced. We suggest that either a limited amount of DNA strand reinvasion or a defect in DNA heteroduplex extension is responsible for the impaired recombination ability of this mutant protein.  相似文献   

12.
RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg2+-dependent DNA helicase activity with a 3′→5′ polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3′-overhang but is inactive on blunt-ended dsDNA and 5′-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5′-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]''s possible functions in preserving genomic stability.  相似文献   

13.
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 °C) and magnesium chloride concentrations of 1 mm or 4 mm, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 °C) and magnesium chloride concentrations of 4 mm or 10 mm, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(±1) nucleotides per RecA protein monomer at 4 mm-MgCl2 and 37 °C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mm-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA. In addition, our results have disclosed an additional property of the RecA protein-single-stranded DNA complex: namely, in the presence of complementary base-pairing and at elevated temperatures and magnesium concentrations, a unique RecA protein-DNA complex forms that is resistant to inhibition by SSB protein.  相似文献   

14.
DNA replication initiation is mediated across all domains of life by initiator proteins oligomerizing at replication origins. Recently, it was shown that initiators can directly bind single-stranded DNA (ssDNA) and thus might enhance origin melting. In this study, we used single-molecule fluorescence assays to probe the ssDNA binding mechanism of the replication initiator DnaA. Our experiments revealed that DnaA forms a dynamic filament on ssDNA in 3′ to 5′ directionality in the presence of ATP and analogs. After nucleation with a three-monomer seed, monomers dynamically assemble and disassemble one monomer at a time at the 5′ end, each monomer binding three nucleotides of ssDNA. The addition of adjacent double-stranded DnaA binding sites stabilized the DnaA filament on ssDNA. Our results extend the current models of origin melting via DnaA ssDNA interaction.  相似文献   

15.
The double substitution of Glu156 with Leu and Gly157 with Val in the Escherichia coli RecA protein results in a severely reduced level of recombination and constitutive coprotease behavior. Here we present our examination of the biochemical properties of this mutant protein, RecA N99, in an effort to understand its phenotype and the role of loop 1 (L1) in RecA function. We find that RecA N99 protein has reduced single-stranded DNA (ssDNA)-dependent ATP hydrolysis activity, which is not as sensitive to the presence of SSB protein as wild-type RecA protein. RecA N99 protein is also nearly unable to utilize duplex DNA as a polynucleotide cofactor for ATP hydrolysis, and it shows both a decreased rate of association with ssDNA and a diminished capacity to bind DNA in the secondary binding site. The mutant protein has a corresponding reduction in DNA strand exchange activity, which probably results in the decrease in recombination activity in vivo. The constitutive induction of the SOS response may be a consequence of the impaired ability to repair damaged DNA, resulting in unrepaired ssDNA which can act as a cofactor for the cleavage of LexA repressor. These findings point to an involvement of L1 in both the primary and secondary DNA binding sites of the RecA protein.  相似文献   

16.
Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.  相似文献   

17.
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3′- or 5′-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5′ and 3′ complementary ends, but only initiation at the 5′-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3′-end of the duplex. We show that RecA-mediated recombination initiated at the 3′- or 5′-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.  相似文献   

18.
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5′–3′ exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5′–3′ exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.  相似文献   

19.
A single-stranded DNA (ssDNA)-binding protein (SSB) that binds to specific upstream sequences of alcohol oxidase (AOX1) promoter of the methylotrophic yeast Pichia pastoris has been isolated and identified as zeta crystallin (ZTA1). The cDNA encoding P.pastoris ZTA1 (PpZTA1) was cloned into an Escherichia coli expression vector, the recombinant PpZTA1 was expressed and purified from E.coli cell lysates. The DNA-binding properties of recombinant PpZTA1 are identical to those of the SSB present in P.pastoris cell lysates. PpZTA1 binds to ssDNA sequences >24 nt and its DNA-binding activity is abolished by NADPH. This is the first report on the characterization of DNA-binding properties of a yeast ZTA1.  相似文献   

20.
The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6–7 nucleotides) downstream of the asymmetric recognition sequence 5′-GCCGC-3′. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号