首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerial dispersal of fungal spores is common, but the role of wind and air movement in dispersal of spores of arbuscular mycorrhizal (AM) fungi is largely unknown. Several studies have examined the possibility of AM fungal spores being moved by wind vectors without observing spores taken from the air environment. For the first time this study observed the presence of AM fungal spores in the air. The frequency of AM fungal spores in the air was determined in six North American biomes composed of 18 ecoregions. Multiple samples were taken from both the air and the soil at each location. AM fungal spores were found in high abundance in the soil (hundreds of spores per gram of soil), however, they were rarely found in the air (most samples contained no AM fungal spores). Furthermore, only the Glomus morphotype was found in the air, whereas spores in the soil were taxomomically more diverse (Glomus, Acaulospora, Gigaspora, Scutellospora morphotypes were observed). The proportion of Glomus spores in the air relative to Glomus spores in the soil was highest in more arid systems, indicating that AM fungi may be more likely to be dispersed in the air in such systems. Nonetheless, the results indicate that the air is not likely a dominant mode of dispersal for AM fungi.  相似文献   

2.
Two hundred homes with a history of water incursion were sampled for fungi to determine the prevalence and airborne spore levels of Stachybotrys spp. Sampling methods included room air, surface, and wall cavity air sampling. Stachybotrys spp. were detected with at least one of the methods in 58.5% of the houses tested, but only 9.6% of the room air samples contained Stachybotrys spores. Aerosolization of Stachybotrys spores was correlated with both wall cavity and surface contamination. However, after adjustment for the surface effect, Stachybotrys spores detected in wall cavities were not a significant factor contributing to spores detected in room air samples. We conclude that Stachybotrys spp. are commonly found on water-damaged building materials. In addition, the observations made in this study suggest that the impact on the living space air is low if the fungal spores are contained within a wall cavity.  相似文献   

3.
R. Harvey 《Mycopathologia》1970,41(3-4):251-256
The high incidence ofCladosporia in the airspora indicates a prolific production of spores. Six species ofCladosporium were sampled over a period of 9 weeks, using dry and wet (mist-laden) air, and over a period of 4 weeks using humid air. Many more spores were released in wet air than in dry air: numbers released in humid air were generally intermediate between those of wet and dry samples. None of the cultures was exhausted of spores at the end of the sampling periods although samples generally decreased in size from the fifth or sixth week onwards. Removal of spores would seem to be conducive to further sporulation provided the substrate is not exhausted. Maximum productivities recorded for the six species (all in mist-laden air) ranged from 730 to 26 100 spores per mg dry weight of mycelium. Differences in the levels of spore production in culture by the six species do not correlate with their individual frequencies in the airspora, indicating that the latter are more dependent on the distribution and substrate relationships of each species.  相似文献   

4.
A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004–2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.  相似文献   

5.
Analysis of numerous air samples has indicated that dormant, viable fungal spores are highly present, which suggests that aerial dispersion is important for fungi. Whereas the majority of the spores may travel only very short distances, there is indication that a notable number of them cover much longer distances. Harmomegathy is a terminology coined by Wodehouse (1935) describing the natural folding of pollen to accommodate controlled and reversible water loss. Here, we discuss evidence that this concept may also apply to airborne fungal spores that face similar challenges and have to survive periods of drought and low temperatures while retaining viability to germinate after deposition upon a suitable moist substrate. In fact, (air)dried conidia, appear collapsed, survive for much longer times compared to spores in liquid, that deteriorate in time. This indicates that for some types of fungal spores, true dormancy is reached in the desiccated state. For these airborne spores this might be regarded as a pre-adaptation that supports long-distance transport of viable cells through air. We state that spores are naturally folded during transport in air if the humidity is low enough. We hypothesize that this is a pre-adaptation supporting release, dispersal and survival of airborne spores. Moreover, the smaller size of dry naturally-folded spores may also be relevant, e.g. for the opportunistic pathogenic fungus Aspergillus fumigatus reduced spore size supports deposition within the alveoli in the lung.  相似文献   

6.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

7.
Take-off of Mould Spores in Relation to Wind Speed and Humidity   总被引:1,自引:0,他引:1  
ZOBERI  M. H. 《Annals of botany》1961,25(1):53-64
Using horizontal tube-cultures of various moulds belonging tothe genera Thamnidmmt, Phymatotrichum, Trichotheciwm, Ptptocephalis,Trichoderma, Mucor and Mycogone, the take-off of dispersal units(usually spores) under the influence of air currents of variousspeeds and of different humidities has been studied. It is foundthat in all the dry-spore forms the number of spores set freeincreases as the speed of the air stream rises. Further, atany given air-stream rate, the numbers of spores set free aregreatest in the first interval of time and rapidly fall offin subsequent intervals. In all species, spores are more readilyset free in air streams of relatively low as compared with thoseof relatively high humidity. Although Trichoderma viride hasbeen regarded as a slime-spore fungus, its conidia can readilybe blown from the conidiophores. No spores could be inducedto take off from Mucor ramarmianus even at the highest air speedsused.  相似文献   

8.
Regional variation in spore deposition and viability was studied for two fungi, Fomitopsis rosea (Alb. & Schwein.: Fr.) P. Karst. and Phlebia centrifuga P. Karst., both confined to old‐growth spruce forests in the boreal zone. Seven regions in Sweden were studied along a north‐south transect in which the historical impact from forestry increases and the amount old forests decreases towards the south. The two southernmost regions were located outside the distribution border of the species. Spore deposition was measured species specifically as heterokaryotisation of homokaryotic mycelia growing on wood discs. There was a significant decline in spore deposition towards the south for both species. F. rosea deposited an average amount of 111 spores m?2 24 h?1 in the northernmost region compared to less than 1 spore in the four southernmost regions. The corresponding values for P. centrifuga were 27 spores m?2 24 h?1 in the north compared to less than 2 spores in the 4 southernmost regions. No deposition was found south of the distribution borders. The viability of spores from local populations within each region was measured as germination success on nutrient media. Individual fruiting bodies from large populations in the north generally produced spores with higher germinability than fruiting bodies from geographically isolated populations in the central and southern regions. However, there was a high variation among the southern populations. Our data suggest that some populations in mid‐ and south Sweden may suffer from negative genetic effects, possibly associated with fragmentation and loss of habitat. Thus, the combination of low spore deposition and low germinability of spores may be a threat to the long‐term persistence of F. rosea and P. centrifuga in southern Sweden. Several other species may experience the same situation, especially when considering the severe decline of dead wood in Swedish forests.  相似文献   

9.
Towards the goal of developing a real-time monitoring device for microorganisms, we demonstrate the use of microcantilevers as resonant mass sensors for detection of Bacillus anthracis Sterne spores in air and liquid. The detection scheme was based on measuring resonant frequency decrease driven by thermally induced oscillations, as a result of the added mass of the spores with the use of a laser Doppler vibrometer (LDV). Viscous effects were investigated by comparing measurements in air and deionized (DI) water along with theoretical values. Moreover, biological experiments were performed which involved suspending spores onto the cantilevers and performing mass detection in air and water. For detection of spores in water, the cantilevers were functionalized with antibodies in order to fix the spores onto the surface. We demonstrate that as few as 50 spores on the cantilever can be detected in water using the thermal noise as excitation source. Measurement sensitivity of 9.23 Hz/fg for air and 0.1 Hz/fg for water were obtained. These measurements were compared with theoretical values and sources of improvement in cantilever sensitivity in a viscous medium were also discussed. It is expected that by driving the cantilevers and using higher order modes, detection of a single spore in liquids should be achievable.  相似文献   

10.
Towards the goal of developing a real-time monitoring device for microorganisms, we demonstrate the use of microcantilevers as resonant mass sensors for detection of Bacillus anthracis Sterne spores in air and liquid. The detection scheme was based on measuring resonant frequency decrease driven by thermally induced oscillations, as a result of the added mass of the spores with the use of a laser Doppler vibrometer (LDV). Viscous effects were investigated by comparing measurements in air and deionized (DI) water along with theoretical values. Moreover, biological experiments were performed which involved suspending spores onto the cantilevers and performing mass detection in air and water. For detection of spores in water, the cantilevers were functionalized with antibodies in order to fix the spores onto the surface. We demonstrate that as few as 50 spores on the cantilever can be detected in water using the thermal noise as excitation source. Measurement sensitivity of 9.23 Hz/fg for air and 0.1 Hz/fg for water were obtained. These measurements were compared with theoretical values and sources of improvement in cantilever sensitivity in a viscous medium were also discussed. It is expected that by driving the cantilevers and using higher order modes, detection of a single spore in liquids should be achievable.  相似文献   

11.
The liberation of asexual propagules in the Mucorales was investigated by means of wind-tunnel experiments. Some species do not liberate propagules into an air stream, others liberate single spores or groups of spores. The effect of the relative humidity of the air stream upon propagule liberation has also been considered.  相似文献   

12.
It was shown that a short-time exposure of the spores of Act. roseolus 981 to air (oxygen) on their lyophilization by the chamber method resulted in formation of increased numbers of the free radicals in the lyophilized spores suspension and decreased the survival of the spores on their further storage under vacuum. The phenomena were less pronounced when the exposure of the spores to the air was excluded by using the collector method of lyophilization. This testified to the advantages of the latter method as compared to the chamber one. No effect of the lyophilization methods on the population composition of the spontaneous variants of Act. roseolus 981 was observed.  相似文献   

13.
To establish the rapid detection method of airborne bacterial spores, we examined Bacillus anthracis spores by real-time PCR. One hundred liters of air were trapped on a filter of an air monitor device. After it was suspended in PBS, spores of B. anthracis were artificially added. The suspension was also heated at 95 degrees C for 15 min and used for real-time PCR using anthrax-specific primers. A single cell of B. anthracis was detected by real-time PCR within 1 h. Our results provide evidence that anthrax spores from the atmosphere can be detected rapidly, suggesting that real-time PCR provides a flexible and powerful tool to prevent epidemics.  相似文献   

14.
《Journal of bryology》2013,35(4):793-794
Abstract

Occurrence of Ptilidium pulcherrimum in transects and spore dispersal from a single colony have been studied in a coastal spruce forest in northern Sweden. The main substrate type was rotting wood with 75% of all occurrences. Annual spore production was 68,500 spores/m2 forest, 640,000 spores/m2 substrate and 44,000,000 spores/m2 colony. Almost 50% of the spores were deposited within 2.5 m of the colony. Annual spore deposition between colonies was estimated to be between 24,000–39,000 and deposition on the main substrate, decaying logs, was about 340–600 spores/m2 forest. P. pulcherrimum showed a clumped distribution pattern up to about a 15 m neighbourhood distance. This pattern could not be explained by a similar clumping of the substrate. Instead a limitation by distance in establishment due to a deficit of spores is assumed.  相似文献   

15.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

16.
Exposure to airborne microorganisms in indoor environments may result in infectious disease or elicit an allergic or irritant response. Air handling system components contaminated by fungi have been implicated in the dispersal of spores into the indoor environment, thereby serving as a route of exposure to occupants. This study was conducted to provide quantitative data on the dispersal of spores from fungal colonies growing on three types of duct material. Galvanized metal, rigid fibrous glass ductboard, and fiberglass duct liner were soiled and contaminated with a known concentration of Penicillium chrysogenum spores. The duct materials were incubated in humidity chambers to provide a matrix of growing, sporulating fungal colonies at a contamination level of 109 colony forming units (CFU) per duct section, consistent for all materials. For each experiment a contaminated duct section was inserted into the air handling system of an experimental room, and the air handling system was operated for three 5-minute cycles with an air flow of 4.2 m3 min–1. The duct air velocity was approximately 2.8 m sec–1. The airborne concentration of culturable P. chrysogenum spores (CFU m–3), total P. chrysogenum spores (spores m–3), and total P. chrysogenum-sized particles (particles m–3) were measured in the room using Andersen single-stage impactor samplers, Burkard slide impactor samplers, and an aerodynamic particle sizer, respectively. The highest airborne concentrations (104 CFU m–3; 105 spores m–3; 104 particles m–3) were measured during the first operating cycle of the air handling system for all duct materials with decreasing airborne concentrations measured during the second and third cycles. There was no significant difference in spore dispersal from the three contaminated duct materials. These data demonstrate the potential exposure for building occupants to high concentrations of spores dispersed from fungal colonies on air handling system duct materials during normal operation of the system.  相似文献   

17.
V. I. Joy Royes 《Grana》2013,52(2):151-157
A knowledge of the pollen and fungal spores which comprise the air spora is useful as a preliminary approach to the problem of respiratory allergy. Therefore, this study of the qualitative and quantitative aspects of the air spora was done. Fungal spores were found to be numerically dominant, comprising 97.73% whilst pollen comprised 0.40% of the total material observed. A small number of types made up the majority of the fungal air spora, namely, Cladosporium, the Sporobolomycetaceae group, Diatrype, Glomerella, hyaline and coloured basidiospores, and septate fusiform spores. Seasonal periodicity studies on twenty-five fungal types showed that a high number of spores were trapped for sixteen during wet months, four during cooler months, and that five showed no seasonal trends. Mean diurnal periodicity studies for the year on the same twenty-five spore types showed that all had a maximum number of spores trapped at some time during the day. Investigation of the effect of rainfall on the numbers of spores released showed that the amount and duration of rainfall, the time of day rain occurs, and the length of the dry period preceding rain were of varying importance to particular spore types.  相似文献   

18.
This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.  相似文献   

19.
Seasonality in Antarctic Airborne Fungal Spores   总被引:1,自引:0,他引:1       下载免费PDF全文
Airborne fungal spores were monitored over periods of up to 131/2 months at three sites on Signy Island in the maritime Antarctic. Fungal spore concentrations in the air were much lower than in other parts of the world. Concentrations were very low during the austral winter but increased during the austral summer. Chlamydospores were the most abundant fungal spore type found. Spores of Cladosporium spp. were the second most frequently trapped form. All spore types samples were most abundant in the summer months, except for chlamydospores, which were most numerous during the winter. The concentration of Cladosporium spores in the air at Signy Island was compared with the concentrations of this spore type found in the air in other parts of the world. It was evident that Cladosporium loses its dominance as the most abundant component of the air spora with increasingly high latitude. The peak concentration of fungal spores occurred at two sites following the start of the thaw; at the third site, the peak occurred with the arrival of spores by long-distance transport from more northerly regions.  相似文献   

20.
The exposure to spores causing health effects is usually assessed by determining the concentration of viable spores per cubic meter of air (CFU/m3).Since allergens might also be present in dead spores or smaller particles, the objective of this study was to investigate the correlation between the viable spores of Alternaria and Cladosporium at different indoor and outdoor sites and the corresponding allergen concentration detected with a specially developed ELISA (Enzyme Linked Immunosorbent Assay). In outdoor air, the results show a strong correlation between the different sampling techniques applied for viable spores (Slit-Sampler and Multistage Liquid Impinger) and between the viable spores and the allergen concentrations detected in the liquid samples of the impingers. Indoors, the number of viable spores and the allergen concentration do not correlate and the allergen load is underestimated if colony counting methods are used. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号