首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1Δ showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a β-glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the β-glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.  相似文献   

2.
3.
Changes occurring to plant cell walls were examined following inoculation of Arabidopsis leaves with pathogenic and non-pathogenic (hrpA mutant) strains of Pseudomonas syringae pv. tomato. We have targeted low molecular weight, cross-linked phenolic and indolic compounds that were released from wall preparations by alkaline hydrolysis at 70 °C and in a microwave bomb. Significantly higher concentrations of syringaldehyde, p hydroxybenzaldehyde and indole carboxylic acid were recovered from cell walls isolated from leaves 24 h after challenge with the hrpA mutant compared with wild-type DC3000. Time course experiments showed that the accumulation of indole carboxylic acid and the other group of differentiating metabolites had occurred within 12 h of inoculation. The callose synthase deficient mutant pmr4-1 was more resistant than wild-type Columbia plants to P. syringae pv. tomato. Restricted bacterial multiplication was associated with increased accumulation of indole carboxylic acid on the plant cell wall. In the absence of callose deposition in the pmr 4-1 mutant, indolic derivatives may serve as a structural scaffold for wall modifications following bacterial challenge.  相似文献   

4.
We have isolated fission yeast mutants that constitutively flocculate upon growth in liquid media. One of these mutants, the gsf1 mutant, was found to cause dominant, nonsexual, and calcium-dependent aggregation of cells into flocs. Its flocculation was inhibited by the addition of galactose but was not affected by the addition of mannose or glucose, unlike Saccharomyces cerevisiae FLO mutants. The gsf1 mutant coflocculated with Schizosaccharomyces pombe wild-type cells, while no coflocculation was found with galactose-deficient (gms1Δ) cells. Moreover, flocculation of the gsf1 mutant was also inhibited by addition of cell wall galactomannan from wild-type cells but not from gms1Δ cells. These results suggested that galactose residues in the cell wall glycoproteins may be receptors of gsf1-mediated flocculation, and therefore cell surface galactosylation is required for nonsexual flocculation in S. pombe.  相似文献   

5.
Bacillus brevis 47, a protein-secreting bacterium, contained two major proteins with approximate molecular weights of 150 000 and 130 000 in the cell wall. The cell surface was covered with a hexagonally arranged array of six structural units about 4 nm in diameter with a lattice constant of 14.5 nm. The regular array structure as well as the chemical composition of cell envelopes remained the same regardless of the growth conditions. A mutant, strain 47–57, which was isolated as a phage resistant colony, contained only the 150 000 protein as a major cell wall protein. Although the mutant had hexagonally arranged arrays with the same lattice constant as that of wild-type cells, the distribution of mass in the unit cell differed considerably from that of the wild-type cells. The number of structural units in the unit cell of the mutant was reduced from six to three. Taking these results together with filtered images of the wild-type and mutant envelopes, two possible models for the surface array of B. brevis 47 are discussed.  相似文献   

6.
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence.  相似文献   

7.
A growing body of evidence indicates that MmpL (mycobacterial membrane protein large) transporters are dedicated to cell wall biosynthesis and transport mycobacterial lipids. How MmpL transporters function and the identities of their substrates have not been fully elucidated. We report the characterization of Mycobacterium smegmatis MmpL11. We showed previously that M. smegmatis lacking MmpL11 has reduced membrane permeability that results in resistance to host antimicrobial peptides. We report herein the further characterization of the M. smegmatis mmpL11 mutant and identification of the MmpL11 substrates. We found that biofilm formation by the M. smegmatis mmpL11 mutant was distinct from that by wild-type M. smegmatis. Analysis of cell wall lipids revealed that the mmpL11 mutant failed to export the mycolic acid-containing lipids monomeromycolyl diacylglycerol and mycolate ester wax to the bacterial surface. In addition, analysis of total lipids indicated that the mycolic acid-containing precursor molecule mycolyl phospholipid accumulated in the mmpL11 mutant compared with wild-type mycobacteria. MmpL11 is encoded at a chromosomal locus that is conserved across pathogenic and nonpathogenic mycobacteria. Phenotypes of the M. smegmatis mmpL11 mutant are complemented by the expression of M. smegmatis or M. tuberculosis MmpL11, suggesting that MmpL11 plays a conserved role in mycobacterial cell wall biogenesis.  相似文献   

8.
Diploid wheat, Triticum monococcum L. (einkorn) is an ideal plant material for wheat functional genomics. Brittle culm mutant was identified by screening of the ethyl methane sulphonate-treated M 2 progenies of a T. monococcum accession pau14087 by banding the plant parts manually. The brittle culm mutant with drooping leaves, early flowering, reduced tiller numbers and susceptible to lodging had also exhibited brittleness in all plant parts than the wild-type parents. Comprehensive mechanical strength, histological, biochemical, scanning electron microscopy, and Fourier transform infrared spectroscopy analyses of brittle culm mutant supplemented and complemented the findings that the mutant had defective cellulose biosynthesis pathway and deposition of cell wall materials on secondary cell wall of mechanical tissues. Microscopic studies demonstrated that the decrease in cellulose contents resulted in the irregular cell wall organization in xylem vessels of leaf vascular bundles. To map the brc5 mutant, mapping populations were developed by crossing the brittle culm mutant with wild Triticum boeoticum acc. pau5088, having non-brittle characters. The brittle culm mutation was mapped between SSR markers, Xcfd39 and Xgwm126 on 5AmL chromosome of T. monococcum, with genetic distances of 2.6 and 4.8 cM, respectively. The brc5 mutant mapped on 5AmL, being distinct from a previously mapped brittle culm mutant in wheat, has been designated as brc5. The work on fine mapping and map-based cloning of brc5 gene regulating synthesis and deposition of cellulose on the secondary cell wall is in progress.  相似文献   

9.
The cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lacking PBX1 and PBX2 were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers of pbxΔ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence of pbx mutants in animal models.  相似文献   

10.
The molecular mechanism involved in cell wall dynamics has not been well clarified, although it is quite important for organ growth. We characterized a rice mutant, root growth inhibiting (rt), which is defective in root elongation. The rt mutant showed a severe defect in cell elongation at the root-elongating zone with additional collapse of epidermal and cortex cells at the root tip caused by the defect in the smooth exfoliation of root cap cells. Consistent with these phenotypes, expression of the RT gene, which encodes a member of the membrane-anchored endo-1,4-??-d-glucanase, was specifically localized in the root-elongating zone and at the junction between epidermal and root cap cells. The enzymatic analysis of root extracts from the wild-type and rt mutant indicated that RT hydrolyzes noncrystalline amorphous cellulose. The cellulose content was slightly increased but the crystallinity of cellulose was decreased in the rt root. In addition, the hemicellulose composition was different between wild-type and rt roots. The total extensibility was significantly lower in the rt root explants. Based on these results, we concluded that RT is involved in the disassembly of the cell wall for cell elongation in roots as well as for root cap exfoliation from the epidermal cell layer by hydrolyzing the noncrystalline amorphous cellulose fibers of cellulose microfibrils resulting in loosening of the hemicellulose and cellulose interaction.  相似文献   

11.
The Streptomyces aureofaciens sigF gene encodes a sigma factor. By integrative transformation, via double cross-over, a stable null mutant of sigF gene was obtained. This mutation appeared to have no obvious effect on vegetative growth, but affected the late stage of spore maturation. Microscopic examination showed that spores were deformed, and spore wall was thinner, compared with the wild-type spores. The spore pigment of sigF mutant was green, compared to wild-type grey-pink spore pigmentation. The plasmid-born wild-type sigF gene complemented the mutation after transformation of the mutant strain.  相似文献   

12.
A mutant strain characterized by hyperproduction of a number of cell wall and supernatant proteins was isolated after N-methyl-N′-nitro-N-nitrosoguanidine treatment of Listeria monocytogenes strain NCTC10527. Several of these proteins were identified as virulence factors. When a wild-type strain was grown in the presence of activated charcoal it was shown to exhibit the same protein pattern as the isolated mutant.  相似文献   

13.
Teichoic acid (TA), together with peptidoglycan (PG), represents a highly complex glycopolymer that ensures cell wall integrity and has several crucial physiological activities. Through an insertion-deletion mutation strategy, we show that ΔrafX mutants are impaired in cell wall covalently attached TA (WTA)-PG biosynthesis, as evidenced by their abnormal banding patterns and reduced amounts of WTA in comparison with wild-type strains. Site-directed mutagenesis revealed an essential role for external loop 4 and some highly conserved amino acid residues in the function of RafX protein. The rafX gene was highly conserved in closely related streptococcal species, suggesting an important physiological function in the lifestyle of streptococci. Moreover, a strain D39 ΔrafX mutant was impaired in bacterial growth, autolysis, bacterial division, and morphology. We observed that a strain R6 ΔrafX mutant was reduced in adhesion relative to the wild-type R6 strain, which was supported by an inhibition assay and a reduced amount of CbpA protein on the ΔrafX mutant bacterial cell surface, as shown by flow cytometric analysis. Finally, ΔrafX mutants were significantly attenuated in virulence in a murine sepsis model. Together, these findings suggest that RafX contributes to the biosynthesis of WTA, which is essential for full pneumococcal virulence.  相似文献   

14.
Auxin Physiology of the Tomato Mutant diageotropica   总被引:5,自引:3,他引:2       下载免费PDF全文
The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.  相似文献   

15.
16.
The spermatodesms of Tylopsis liliifolia form in the most proximal follicular cysts and are composed of a large number of sperm held together by a cap located in the anterior region of the acrosome. The cap is formed by short thin fibrils, loosely arranged at random, probably derived from secretory activity of cells of the cyst wall. Compared to other Tettigoniidae, a peculiar feature is acrosomal wings that twist gradually around the anterior region of the nucleus; at the end of the twisting process, the region of the sperm acrosome, observed in cross section, shows a typical spiral form. Spermatodesms do not undergo any substantial changes in the spermiduct. The epithelial cells of the wall have secretory activity and many show marked spermiophagic activity, which is conducted by epithelial cell protrusions that envelop the gametes, taking them into the cytoplasm. When removed from seminal vesicles and observed in vivo, spermatodesms show accentuated corkscrew movement, and when observed by SEM, slight torsion. Thus organized, spermatodesms are transferred to the spermatophore during mating, where they are transformed before reaching the seminal receptacle.  相似文献   

17.
The enzyme α-1,6-mannosyltransferase (OCH-1) is required for the synthesis of galactomannans attached to the N-linked oligosaccharides of Neurospora crassa cell wall proteins. The Neurospora crassa och-1 mutant has a tight colonial phenotype and a defective cell wall. A carbohydrate analysis of the och-1 mutant cell wall revealed a 10-fold reduction in the levels of mannose and galactose and a total lack of 1,6-linked mannose residues. Analysis of the integral cell wall protein from wild-type and och-1 mutant cells showed that the mutant cell wall had reduced protein content. The och-1 mutant was found to secrete 18-fold more protein than wild-type cells. Proteomic analysis of the proteins released by the mutant into the growth medium identified seven of the major cell wall proteins. Western blot analysis of ACW-1 and GEL-1 (two glycosylphosphatidylinositol [GPI]-anchored proteins that are covalently integrated into the wild-type cell wall) showed that high levels of these proteins were being released into the medium by the och-1 mutant. High levels of ACW-1 and GEL-1 were also released from the och-1 mutant cell wall by subjecting the wall to boiling in a 1% SDS solution, indicating that these proteins are not being covalently integrated into the mutant cell wall. From these results, we conclude that N-linked mannosylation of cell wall proteins by OCH-1 is required for their efficient covalent incorporation into the cell wall.The fungal cell wall is an important organelle that protects the cell from various environmental stresses. It is a dynamic structure that interacts with the environment and is modified to accommodate growth, cell division, and development. Fungal cell walls have been shown to contain β-1,3-glucan, α-1,3-glucan, β-1,6-glucan, mixed β-1,3/β-1,4-glucans, chitin, and mannan/galactomannan (6, 19). These polysaccharide polymers constitute 80 to 85% of the cell wall mass, while glycoproteins constitute the remaining 15 to 20% (6). The cell wall glycoproteins are required for vital functions, like structural support, signal transduction, biofilm formation, and cell wall biosynthesis. In the case of pathogenic fungi, the cell wall is critical for the invasion of host tissues (8). Because of their accessibility and the crucial functions they perform, cell wall proteins could be important targets for the development of antifungal therapeutics.The glucan and chitin cell wall polymers are synthesized by enzyme complexes (glucan synthases and chitin synthases) that are associated with the plasma membrane. Glucan and chitin are vectorially passed into the cell wall space during synthesis and cross-linked together in the cell wall space. The mannan and galactomannan present in the cell wall are found as glycoconjugates on cell wall proteins. Mannosylation of cell wall proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus at O-linked and N-linked glycosylation sites. In Saccharomyces cerevisiae, mannosylation of N-linked glycosylation is initiated by the addition of an α-1,6-linked mannose residue by Och1p (33). In the filamentous fungus Neurospora crassa, the structure of the galactomannan associated with N-linked sites has not been definitively determined, but N. crassa has most of the enzymes defined in yeast for the mannosylation of N-linked oligosaccharides (14). An analysis of N-linked oligosaccharides from N. crassa glycoproteins showed that the glycoproteins are modified by the addition of short α-1,6-mannans with short α-1,2-mannose branches that are terminated by galactofuranose residues (31, 32). The N. crassa posttranslational modifications appear to differ from those found in S. cerevisiae by having shorter mannan chains and by the presence of terminal galactofuranose residues.Mannosylation of glycoproteins has been extensively studied in yeast. In S. cerevisiae, OCH1 encodes the α-1,6-mannosyltransferase enzyme that mediates the addition of the initial α-1,6-mannose in the synthesis of long mannans which are attached to the N-linked oligosaccharides (22, 33). Knockout mutants of OCH1 are viable but exhibit a temperature-sensitive growth pattern and are sensitive to cell wall perturbation reagents (34). Mutants for Candida albicans homologs of OCH1 had near-normal growth rates but were much less virulent (3). Mass spectrometry analysis of glycoproteins from the S. cerevisiae och1 and C. albicans och1 mutants showed that the α-1,6-mannose core was absent (3, 33). In Kluyveromyces lactis, the KlOCH1 gene has been shown to be important for cell wall organization and to give a hypersecretion phenotype (37). OCH1 mutants have also been identified in Pichia angusta, Yarrowia lipolytica, Pichia pastoris, and Schizosaccharomyces pombe, and these mutants have cell wall-related phenotypes (2, 9, 17, 38). However, a recent report of OCH1 knockout mutants of Aspergillus fumigatus indicates that these mutants do not have a cell wall-defective phenotype (18).Mannosylation of cell wall proteins has not been extensively studied in filamentous fungi. We report on the characterization of the N. crassa knockout mutant of the α-1,6-mannosyltransferase, och-1. The mutant was generated by the Neurospora genome knockout project (10). The N. crassa och-1 mutant has a severe growth defect and exhibits a tight colonial phenotype. We demonstrate that the och-1 mutant exhibits a defect in cell wall biosynthesis. A carbohydrate analysis of the mutant cell wall showed a drastic reduction in mannose and galactose content with a compensatory increase in the glucose content. The och-1 cell wall also showed a reduced cell wall protein content as assessed by a Coomassie brilliant blue dye binding assay and by proteomic analysis. Protein secretion assays showed that the mutant releases large amounts of cell wall protein into the growth medium. We demonstrate that the och-1 mutant is defective in covalently cross-linking known cell wall proteins into the cell wall matrix. Our data demonstrate that the N-linked galactomannan, which is built upon the mannose residue added by OCH-1, is required for the incorporation of cell wall proteins into the cell wall matrix.  相似文献   

18.
19.
The distribution and localization of structural polymers in the cell wall of Neurospora crassa has been studied by selective removal and light and electron microscope examination. Observations with the light microscope indicated that each polymer by itself can provide structural integrity to the cell wall. Examination by electron microscopy showed that the cell wall consists of an outer layer of thick fibrils, identified chemically as a glucan-peptide-galactosamine complex, and an inner layer made up of β-1,3 glucan and thin fibrils of chitin.  相似文献   

20.
CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ (lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δ single mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutant alg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δ double mutant, are not observed in the triple mutant alg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号