首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sumioka I  Matsura T  Kai M  Yamada K 《Life sciences》2004,74(20):2551-2561
The aim of the present study was to assess the contribution of the level of expression of heat shock protein 25 (HSP25), 60 (HSP60), 70 (HSC70) and 70i (HSP70i) in mouse livers after a lethal dose of acetaminophen (APAP) to their survival. We examined changes in survival ratio, plasma APAP level and alanine aminotransferase (ALT) activity, and hepatic reduced glutathione (GSH), HSP25, HSP60, HSC70 and HSP70i levels following treatment of mice with APAP (500 mg/kg, p.o.). The plasma APAP level increased rapidly, and reached a maximum 0.5 h after APAP treatment. Hepatic GSH decreased rapidly, and was almost completely depleted 1 h after APAP treatment. Plasma ALT activity, an index of liver injury, significantly increased from 3 h onwards after APAP treatment. The survival ratios 9 h, 24 h and 48 h after APAP treatment were 96%, 38% and 36%, respectively. We found a remarkable difference in the patterns of hepatic HSP25 and HSP70i induction in mice that survived after APAP treatment. HSP70i levels increased from 1 h onwards after APAP treatment in a time-dependent manner, and reached a maximum at 9 h. In contrast, HSP25 could be detected just 24 h after APAP treatment, and maximal accumulation was observed at 48 h. Other HSPs examined were unchanged. Notably, the survival ratio dropped by only 2% after HSP25 expression. Recently, a novel role for HSP25 as an anti-inflammatory factor was suggested. We have already shown that 48-h treatment with APAP induces severe centrilobular necrosis with inflammatory cell infiltration in mouse livers. Taken together, the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult.  相似文献   

2.
Xu CS  Xia M  Lu AL  Li XY  Li YH  Zhao XY  Hu YH 《生理学报》1999,51(5):548-556
本文以2/3肝切除(partial hepatectomy,PH)大鼠为模型,探讨了PH后酸性和碱性磷酸酶(acid and alkaline phosphatases,ACP和AKP),构成性热休克蛋白70/诱导性热休克蛋白68(HSC7/HSP68),酸性和中性蛋白水解酶在肝再生期间(0-144h)的动态变化。结果显示,在肝切除后的肝再生期间;(1)ACP和AKP均出现两个活性高峰(4和48h  相似文献   

3.
Treatment of rats with a single dose of thioacetamide (TAA) provokes centrilobular inflammation and a significant expression of heat shock protein HSP25 in hepatocytes surrounding the area of inflammation. The HSP25 accumulation in hepatocytes adjacent to inflammatory regions was confirmed by identification of positive hepatocytes concentrated at periportal areas after treatment of rats with allyl alcohol (AA) or distributed diffusely throughout liver lobule after treatment with d-galactosamine (d-gal). In our model of TAA-treated rats the use of the anti-inflammatory drug—indomethacin, and the redox-regulating drug—N-acethylcysteine (NAC), significantly attenuated TAA-induced HSP25 expression and evoked morphological changes of recruited ED1+ macrophages. Treatment of rats with gadolinium chloride (GdCl3) decreased considerably the number of Kupffer cells (ED2+ macrophages) without affecting significantly the number and morphology of ED1+ macrophages as well as the expression pattern of TAA-induced HSP25. Our data shows for the first time that ED1+ macrophages recruited into the liver by treatment with TAA play a significant role in HSP25 induction in hepatocytes.  相似文献   

4.
To further elucidate the role of the constitutive heat shock protein-70 (HSC70) as a chaperone for the synthesis of myelin basic protein (MBP), HSC70 content was decreased in oligodendrocyte precursor cells prior to MBP expression either by transfection with an antisense oligonucleotide specific for HSC70, or by exposure to low levels of quercetin, a bioflavonoid known to decrease synthesis of HSC70. As these cells underwent differentiation in vitro, antisense treatment decreased HSC70 levels to 66% of controls. At the same time, a sharp induction resulted in the stress-inducible heat shock protein-70 (HSP70). Levels of two other stress proteins increased as well, namely, the 25-kDa heat shock protein (HSP25) and the 78-kDa glucose regulated protein (GRP78). MBP synthesis proceeded over a normal time course, but at only 50% of control values. As HSC70 content returned to normal, MBP synthesis was also restored to normal levels. Quercetin reduced the expression of HSC70 to an even greater extent than transfection, and prevented the induction of HSP70. In contrast to antisense-treated cells, MBP synthesis was essentially blocked in quercetin-treated cells even though levels of HSP25 and GRP78 increased. Taken together, these observations (a) indicate that HSP70 partially compensates for decreased chaperoning of nascent MBP by HSC70 (HSC70 and HSP70 are closely related and perform similar functions); (b) preclude the involvement of HSP25 and GRP78 in MBP synthesis; and (c) emphasize the requirement of HSC70 for optimal synthesis of MBP.  相似文献   

5.
6.
Signaling through the target of rapamycin is required for increased protein synthesis, cell growth, and proliferation in response to growth factors. However, the downstream mediators of these responses, and the elements linking growth and proliferation, have not been fully elucidated. Rapamycin inhibits hepatocyte proliferation in culture and liver regeneration in vivo. In cultured rat hepatocytes, rapamycin prevented the up-regulation of cyclin D1 as well as proteins acting downstream in the cell cycle. Transfection with cyclin D1 or E2F2, but not cyclin E or activated Akt, overcame the rapamycin-mediated cell cycle arrest. Rapamycin also inhibited the induction of global protein synthesis after growth factor stimulation, and cyclin D1 overcame this inhibition. Rapamycin inhibited hepatocyte proliferation and cyclin D1 expression in the mouse liver after 70% partial hepatectomy. In rapamycin-treated mice, transfection with cyclin D1 induced hepatocyte proliferation, increased hepatocyte cell size, and promoted growth of the liver. These results suggest that cyclin D1 is a key mediator of increased protein synthesis, cell growth, and proliferation downstream of target of rapamycin in mitogen-stimulated hepatocytes.  相似文献   

7.
Abstract: The effect of pentobarbital on the induction of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs after transient global ischemia in gerbil brains was investigated by in situ hybridization using cloned cDNA probes selective for each mRNA species. In sham control brains, HSP70 mRNA was scarcely present, whereas HSC70 mRNA was present in most cell populations. After a 5-min occlusion of bilateral common carotid arteries, HSP70 and HSC70 mRNAs were induced together in several cells and were especially dense in hippocampal dentate granule cells at 3 h, but the strong hybridization of the mRNAs continued only in hippocampal CA1 cells by 2 days. At 7 days after the ischemia, CA1 neuronal cell death was apparent, and the HSP70 mRNA disappeared and HSC70 mRNA content returned to the sham level, except for in the CA1 cells. Pretreatment with pentobarbital (40 mg/kg, i.p.) greatly reduced or inhibited the induction of HSP70 and HSC70 mRNAs at both early (3-h) and late (2-day) phases after ischemia. The drug also prevented CA1 cell death at 7 days along with the maintenance of expression of HSC70 mRNA at the sham control level. Hypothermic effects of pentobarbital were noted at 30 and 60 min after the reperfusion, whereas at 2 h there was no statistical significance between the control and drug-treated groups. The great reduction of HSP70 and HSC70 mRNA induction at both early and late phases after ischemia suggests that pentobarbital reduces intra- and/or postischemic stress and may protect CA1 cells from ischemic damage. These effects of the drug may be mainly due to its specific action rather than its hypothermic effects.  相似文献   

8.
The physiological roles played by hepatocytes and nonparenchymal cells of rat liver in the metabolism of vitamin D3 have been investigated. Tritium-labeled vitamin D3 dissolved in ethanol was administered intravenously to two rats. Isolation of the liver cells 30 and 70 min after the injection showed that vitamin D3 had been taken up both by the hepatocytes and by the nonparenchymal liver cells. The relative proportion of vitamin D3 that accumulated in the nonparenchymal cells increased with time. Perfusion of the isolated rat liver with [3H] vitamin D3 added to the perfusate confirmed the ability of both cell types to efficiently take up vitamin D3 from the circulation. By a method based on high pressure liquid chromatography and isotope dilution-mass fragmentography it was found that isolated liver cells in suspension had a considerable capacity to take up vitamin D3 from the medium. About 2.5 fmol of vitamin D3 were found to be associated with each hepatocyte or nonparenchymal cell after 1 h of incubation. 25-Hydroxylation in vitro was found to be carried out only by the hepatocytes. The rate of hydroxylation was about the same whether the cells were isolated from normal or rachitic rats (3.5 and 4 pmol of 25-hydroxyvitamin D3 formed per h per 10(6) cells, respectively). The possibility that the nonparenchymal cells might serve as a storage site for vitamin D3 in the liver is discussed.  相似文献   

9.
Liver cells isolated from pre‐clinical models are essential tools for studying liver (patho)physiology, and also for screening new therapeutic options. We aimed at developing a new antibody‐free isolation method able to obtain the four main hepatic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macrophages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution centrifugations while non‐parenchymal cells were subjected to differential centrifugation. Two different fractions were obtained: HSC and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by selective adherence time to collagen‐coated substrates. Isolated cells showed high viability (80%‐95%) and purity (>95%) and were characterized as functional: hepatocytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo fenestrae distribution, HMΦ increased expression of inflammatory markers in response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol allows the simultaneous isolation of highly pure and functional hepatic cell sub‐populations from control or cirrhotic single livers without antibody selection.  相似文献   

10.
Hepatic stellate cells (HSCs) undergo myofibroblastic activation in liver fibrosis and regeneration. This phenotypic switch is mechanistically similar to dedifferentiation of adipocytes as such the necdin-Wnt pathway causes epigenetic repression of the master adipogenic gene Pparγ, to activate HSCs. Now we report that delta-like 1 homolog (DLK1) is expressed selectively in HSCs in the adult rodent liver and induced in liver fibrosis and regeneration. Dlk1 knockdown in activated HSCs, causes suppression of necdin and Wnt, epigenetic derepression of Pparγ, and morphologic and functional reversal to quiescent cells. Hepatic Dlk1 expression is induced 40-fold at 24 h after partial hepatectomy (PH) in mice. HSCs and hepatocytes (HCs) isolated from the regenerating liver show Dlk1 induction in both cell types. In HC and HSC co-culture, increased proliferation and Dlk1 expression by HCs from PH are abrogated with anti-DLK1 antibody (Ab). Dlk1 and Wnt10b expression by Sham HCs are increased by co-culture with PH HSCs, and these effects are abolished with anti-DLK Ab. A tail vein injection of anti-DLK1 Ab at 6 h after PH reduces early HC proliferation and liver growth, accompanied by decreased Wnt10b, nonphosphorylated β-catenin, p-β-catenin (Ser-552), cyclins (cyclin D and cyclin A), cyclin-dependent kinases (CDK4, and CDK1/2), p-ERK1/2, and p-AKT. In the mouse developing liver, HSC precursors and HSCs express high levels of Dlk1, concomitant with Dlk1 expression by hepatoblasts. These results suggest novel roles of HSC-derived DLK1 in activating HSCs via epigenetic Pparγ repression and participating in liver regeneration and development in a manner involving the mesenchymal-epithelial interaction.  相似文献   

11.
12.

Background

Platelet-derived growth factor receptor α (PDGFRα) expression is increased in activated hepatic stellate cells (HSCs) in cirrhotic liver, while normal hepatocytes express PDGFRα at a negligible level. However, cancerous hepatocytes may show upregulation of PDGFRα, and hepatocellular carcinoma is preceded by chronic liver injury. The role of PDGFRα in non-cancerous hepatocytes and liver fibrosis is unclear. We hypothesized that upon liver injury, PDGFRα in insulted hepatocytes contributes to liver fibrosis by facilitating intercellular crosstalk between hepatocytes and HSCs.

Methods

Hepatocytes were isolated from normal and thioacetamide (TAA)-induced cirrhotic livers for assessment of PDGFRα expression. Conditional knock-out (KO) C57BL/6 mice, in which PDGFRα was selectively deleted in hepatocytes, were generated. Liver fibrosis was induced by injecting TAA for 8?weeks. Hep3B cells were transfected with a small interfering RNA (siRNA) (PDGFRα or control) and co-cultured with LX2 cells.

Results

PDGFRα expression was increased in hepatocytes from fibrotic livers compared to normal livers. Conditional PDGFRα KO mice had attenuated TAA-induced liver fibrosis with decreased HSC activation and proliferation. Immunoblot analyses revealed decreased expression of phospho-p44/42 MAPK in TAA-treated KO mice; these mice also showed almost complete suppression of the upregulation of mouse double minute 2. Although KO mice exhibited increased expression of transforming growth factor (TGF)-β and Smad2/3, this was compensated for by increased expression of inhibitory Smad7. LX2 cells co-cultured with PDGFRα siRNA-infected Hep3B cells showed decreased PDGFRα, α smooth muscle actin, collagen α1(I), TGFβ, and Smad2/3 expression. LX2/PDGFRα-deleted hepatocyte co-culture medium showed decreased PDGF-BB and PDGF-CC levels.

Conclusions

Deletion of PDGFRα in hepatocytes attenuated the upregulation of PDGFRα in HSCs after TAA treatment, resulting in decreased liver fibrosis and HSC activation. This suggests that in the event of chronic liver injury, PDGFRα in hepatocytes plays an important role in liver fibrosis by affecting PDGFRα expression in HSCs.
  相似文献   

13.
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

14.
15.
Stress proteins (heat shock proteins, HSP) play essential roles in folding, assembly and translocation of polypeptides and also in maintenance of the integrity of polypeptides as molecular chaperones. Since long-lasting hyperglycemia causes modification of cellular proteins, it is possible that expression of molecular chaperones may be altered during the course of diabetes. Here, we examined the cellular levels of stress proteins such as HSP105, HSP90 and HSC70/HSP70 in various tissues of streptozotocin-induced diabetic rats. In comparison to controls, the levels of HSC70 were markedly decreased in the liver but not in the brain, adrenal gland and pancreas of diabetic rats. The levels of HSP105 and HSP90 were not significantly changed in these tissues of diabetic rats. Furthermore, the induction of HSP70 as well as HSC70 by hyperthermia was significantly reduced in the liver and adrenal gland of diabetic rats. These results suggested that the expression and induction of HSC70/HSP70 may be altered during the course of diabetic disease and may result in impairment of the cytoprotective ability of diabetic rats.  相似文献   

16.
Soon after penetration of adenovirus serotype 2 in BHK-21 and HeLa cells, HSP70 and HSC70 proteins become associated with the viral capsid. By analysis with a polyclonal antibody derived from a fusion protein containing the C-terminal domain, 290 amino acids of HSP70, and using both immunological methods and infected cells fractionation we observed that a significant amount of HSP70 proteins moved to the nucleus and colocalized with the adenovirus particles. HSP70 proteins of infected cells were isolated as a complex cross-linked with intracytoplasmic adenovirus type 2. By coprecipitation, using a polyclonal-specific antiserum derived from the fusion protein, or two different monoclonal-specific antisera, we showed that HSP70 and HSC70 proteins were associated with hexon, the major adenovirus capsid protein.  相似文献   

17.
Fc receptors in sinusoidal cells and immune complex uptake were studied histologically in D-galactosamine HCl (GalN)-induced liver injury in rats. Kupffer cells and monocytes were distinguished from sinusoidal endothelial cells and from each other by endogenous peroxidase staining. Fc receptors were found along the sinusoidal endothelium throughout the lobules in normal livers. In acute injury caused by 300 or 750 mg/kg of GalN, Fc receptors were preserved within necrotic foci until the foci were infiltrated by inflammatory cells. The endothelial Fc receptor activity altered, as demonstrated by their capacity to bind immune complexes, after GalN injection. The activity decreased from 24 h after injection in the periportal areas in both dose groups, and increased transiently with dose-dependence in the remaining areas. Kupffer cell numbers also showed a transient dose-dependent increase, except in the periphery of lobules where they generally decreased. In chronic injury with 400 mg/kg, Fc receptors were lost and Kupffer cells decreased in the periportal areas. Circulating immune complexes were ingested by Kupffer cells and endothelial cells in normal and injured livers, showing the the same distribution as that of Fc receptors except that the complexes decreased gradually towards the centrilobular zones.  相似文献   

18.
In this study, activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway was analyzed in proliferating rat hepatocytes both in vivo after partial hepatectomy and in vitro following epidermal growth factor (EGF)-pyruvate stimulation. First, a biphasic MEK/ERK activation was evidenced in G(1) phase of hepatocytes from regenerating liver but not from sham-operated control animals. One occurred in early G(1) (30 min to 4 h), and the other occurred in mid-late G(1), peaking at around 10.5 h. Interestingly, the mid-late G(1) activation peak was located just before cyclin D1 induction in both in vivo and in vitro models. Second, the biological role of the MEK/ERK cascade activation in hepatocyte progression through the G(1)/S transition was assessed by adding a MEK inhibitor (PD 98059) to EGF-pyruvate-stimulated hepatocytes in primary culture. In the presence of MEK inhibitor, cyclin D1 mRNA accumulation was inhibited, DNA replication was totally abolished, and the MEK1 isoform was preferentially targeted by this inhibition. This effect was dose dependent and completely reversed by removing the MEK inhibitor. Furthermore, transient transfection of hepatocytes with activated MEK1 construct resulted in increased cyclin D1 mRNA accumulation. Third, a correlation between the mid-late G(1) MEK/ERK activation in hepatocytes in vivo after partial hepatectomy and the mitogen-independent proliferation capacity of these cells in vitro was established. Among hepatocytes isolated either 5, 7, 9, 12 or 15 h after partial hepatectomy, only those isolated from 12- and 15-h regenerating livers were able to replicate DNA without additional growth stimulation in vitro. In addition, PD 98059 intravenous administration in vivo, before MEK activation, was able to inhibit DNA replication in hepatocytes from regenerating livers. Taken together, these results show that (i) early induction of the MEK/ERK cascade is restricted to hepatocytes from hepatectomized animals, allowing an early distinction of primed hepatocytes from those returning to quiescence, and (ii) mid-late G(1) MEK/ERK activation is mainly associated with cyclin D1 accumulation which leads to mitogen-independent progression of hepatocytes to S phase. These results allow us to point to a growth factor dependency in mid-late G(1) phase of proliferating hepatocytes in vivo as observed in vitro in proliferating hepatocytes and argue for a crucial role of the MEK/ERK cascade signalling pathway.  相似文献   

19.
A cell line derived from the tailfin of the marine teleost yellowtail fish Seriola quinqueradiata was established to examine cellular temperature regulation in an ectothermic animal. Three cytosolic members of the HSP70 family, heat-shock cognate proteins HSC70-1, HSC70-2 and heat-shock protein HSP70, were isolated from cultured yellowtail cells as stress-responsive biomarkers. Expression of hsp70 was heat-inducible, in contrast to the hsc70-1 gene product, which was expressed constitutively. In addition, expression of hsc70-2 was only induced under severe heat-shock conditions. Subcellular fractionation and immunocytochemistry showed localization of HSC70/HSP70 in the lysosomes, indicating that chaperone-mediated autophagy is induced by heat shock. Thus, chaperone-mediated autophagy is assisted by HSC70/HSP70, and heat-inducible expression of the genes encoding these proteins may be responsible for survival and adaptation under heat-shock conditions in fish cells.  相似文献   

20.
The RNA-binding protein CUGBP1 regulates translation of proteins in a variety of biological processes. In this study, we show that aging liver increases CUGBP1 translational activities by induction of a high molecular weight protein-protein complex of CUGBP1. The complex contains CUGBP1, subunits alpha, beta, and gamma of the initiation translation factor eIF2, and four proteins of the endoplasmic reticulum, eR90, CRT, eR60, and Grp78. The induction of the CUGBP1-eIF2 complex in old livers is associated with the elevation of protein levels of CUGBP1 and with the hyper-phosphorylation of CUGBP1 by a cyclin D3-cdk4 kinase, activity of which is increased with age. We have examined the role of the elevation of CUGBP1 and the role of cyclin D3-cdk4-mediated phosphorylation of CUGBP1 in the formation of the CUGBP1-eIF2 complex by using CUGBP1 transgenic mice and young animals expressing high levels of cyclin D3 after injection with cyclin D3 plasmid. These studies showed that both the increased levels of CUGBP1 and cdk4-mediated hyper-phosphorylation of CUGBP1 are involved in the age-associated induction of the CUGBP1-eIF2 complex. The CUGBP1-eIF2 complex is bound to C/EBPbeta mRNA in the liver of old animals, and this binding correlates with the increased amounts of liver-enriched activator protein and liver-enriched inhibitory protein. Consistent with these observations, the purified CUGBP1-eIF2 complex binds to the 5' region of C/EBPbeta mRNA and significantly increases translation of the three isoforms of C/EBPbeta in a cell-free translation system, in cultured cells, and in the liver. Thus, these studies demonstrated that age-mediated induction of the CUGBP1-eIF2 complex changes translation of C/EBPbeta in old livers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号