首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2001,38(3):477-479
The photosynthetic and growth responses of A. mangium to different photosynthetic photon flux density (PPFD) during early seedling establishment (36 d after sowing) were investigated. Shade-grown A. mangium seedlings exhibited lower chlorophyll (Chl) a/b ratio, higher Chl and carotenoid (Car) contents, and higher total Chl/Car ratio than sun-grown seedlings. Sun-grown seedlings showed significantly higher photosynthetic capacity and total plant dry mass. High PPFD was crucial for the successful early establishment and robust growth of A. mangium seedlings.  相似文献   

2.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2002,40(4):635-639
The optimum temperature for photosynthetic CO2 assimilation of A. mangium phyllodes was 30–32 °C. Photosystem 2 (PS 2) exhibited high tolerance to high temperature. Gas exchange and the function of PS2 of A. mangium were adapted to the temperature regime of the tropical environment and this might be the contributing factor to their fast growth under tropical conditions.  相似文献   

3.
A universal set of equations for determining chlorophyll (Chl) a, accessory Chl b, c, and d, and total Chl have been developed for 90 % acetone, 100 % methanol, and ethanol solvents suitable for estimating Chl in extracts from natural assemblages of algae. The presence of phaeophytin (Ph) a not only interferes with estimates of Chl a but also with Chl b and c determinations. The universal algorithms can hence be misleading if used on natural collections containing large amounts of Ph. The methanol algorithms are severely affected by the presence of Ph and so are not recommended. The algorithms were tested on representative mixtures of Chls prepared from extracts of algae with known Chl composition. The limits of detection (and inherent error, ±95 % confidence limit) for all the Chl equations were less than 0.03 g m−3. The algorithms are both accurate and precise for Chl a and d but less accurate for Chl b and c. With caution the algorithms can be used to calculate a Chl profile of natural assemblages of algae. The relative error of measurements of Chls increases hyperbolically in diluted extracts. For safety reasons, efficient extraction of Chls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of Chls in natural assemblages of aquatic plants.  相似文献   

4.
Ashraf  M.  Ahmad  Ashfaq  McNeilly  T. 《Photosynthetica》2001,39(3):389-394
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg–1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (P N), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on P N was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply.  相似文献   

5.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

6.
Responses of plants deficient in chlorophyll b (Chl b) to a long-term (lasting for 7 days) decrease in illumination and subsequent restoration of normal illumination were investigated in chlorina 3613 mutant of barley (Hordeum vulgare L.). Efficiency of acclimation was estimated by productivity. Throughout the entire vegetation period, control chlorina 3613 plants growing under full natural illumination (PAR photon flux density of 2000–2200 μmol/(m2s)) were notable for a low content of chlorophyll a (Chl a), slow growth, and low productivity as compared with Donaria parent genotype (wild type). In the experiments, mature chlorina 3613 plants were shaded for 1 week, so that radiant flux density of PAR came to 60 or 40% of that in full sunlight. In experimental chlorina 3613 plants subjected to shading for 7 days, accumulation of Chl a and the lack of Chl b were accompanied by activation of growth processes and rise in total biomass; in contrast, in Donaria 7-day-long shading negatively influenced the accumulation of biomass by the plants. After restoration of full natural illumination, growth and productivity characteristics of chlorina 3613 plants, which for 7 days received only 40% of full natural illumination, became close to the characteristics of wild-type plants. Thus, the lack of Chl b in chlorina 3613 plants did not affect growth and productivity after a 7-day-long shading (to 40% of full illumination).  相似文献   

7.
Barley (Hordeum vulgare L.) mutant chlorina 3613 is notable for a lack of chlorophyll b (Chl b), low content of chlorophyll a (Chl a) and carotenoids in the chloroplasts, as well as reduction in the majority of components of LHCI and LHCII. Incompletely developed photosynthetic machinery of chlorina 3613 results in suppressed growth, lower biomass, and the declined rate of photosynthesis (as compared with the wild-type cv. Donaria). The lack of Chl b and greater part of peripheral antenna suggests that this mutant will have difficulties during acclimation to long-term shading because the light-harvesting role of Chl b-containing antenna becomes more important under the shortage of light. Earlier, our experiments with the mature chlorina 3613 plants shaded for one week at PAR photon flux density of 60 and 40% of that in full sunlight showed a stimulating effect of shading on growth, biomass accumulation, and Chl a synthesis in chlorina 3613 when biosynthesis of Chl b did not occur [1]. In this work, we investigated in more detail the changes in the content of carotenoids in chlorina 3613. We found that in Donaria at both investigated levels of illumination (60 and 40% of full sunlight) and in chlorina 3613 at 60% illumination, moderate reversible changes typical of shade-enduring plants occur in the content of carotenoids. In chlorina 3613 at 40% illumination, the content of β-carotene increased considerably (by 3 times) with simultaneous accumulation of Chl a. When full illumination was restored, the content of β-carotene decreased and remained on the level, which exceeded its initial content in the plants without shading by 38%; this level, was maintained by the end of vegetation. The changes in the contents of β-carotene and Chl a in chlorina 3613 were not accompanied by any accumulation of xanthophylls or changes in the relative content of active violaxanthin. The obtained results suggest that a long-term shading of the leaves of mature chlorina 3613 plants induced the formation of certain components of photosynthetic apparatus: reactive centers and core parts of photosystems’ antennae as well as proteins CP26 and CP29 and in this way contributed to partial restoration of photosynthetic activity and production process in the mutant lacking Chl b.  相似文献   

8.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   

9.
The possibility of improving the recovery of plant photosynthesis after water stress by cytokinin-induced stimulation of stomatal opening or delay of leaf senescence was tested. The 6-benzylaminopurine (BAP) in concentrations 1 and 10 M was applied to the substrate (sand + nutrient solution) or sprayed on primary leaves of 14-d-old Phaseolus vulgaris L. plants sufficiently supplied with water or water-stressed for 4 d. The later ones having relative water content decreased to 69 % were fully rehydrated during the following three days. Parameters of photosynthesis and water relations were measured in primary leaves of 7-, 10-, 14-, and 17-d-old plants. Application of 1 M BAP slightly delayed leaf senescence: in 17-d-old control plants, net photosynthetic rate (PN) and chlorophyll (Chl) content, and when sprayed on leaves also some of Chl a fluorescence kinetic parameters of BAP-treated leaves were slightly higher than those of untreated leaves. Both types of application of 1 M BAP slightly improved recovery of plants during rehydration after water stress in terms of increased gad, gab and PN, i.e., parameters which were markedly decreased by mild water stress. However, contents of Chl a, Chl b and carotenoids and parameters of Chl a fluorescence kinetic were not markedly affected by mild water stress and after rehydration were not stimulated by 1 M BAP. 10 M BAP had mostly negative effects on the parameters measured.  相似文献   

10.
The tested tree species included pioneer species Acacia mangium, early succession stage species Schima superba, mesophyte intermediate-succession species Machilus chinensis, and shade-tolerant plant or late-succession species Cryptocarya concinna which occur in the lower subtropical forest community. A comparison with the current ambient level of UV-B radiation (UV-B) showed the leaf net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of the four species ranged from significantly decreased to no significant change. Additionally, the thickness of palisade and mesophyll in leaves of four tree species were decreased sharply by enhanced UV-B. The thickness of spongy parenchyma in leaves was also decreased except for M. chinensis. UV-B increased the leaf width of A. mangium but its leaf length, leaf thickness, and dry mass per unit area were not affected. Significantly increased stomata width was observed in A. mangium leaf epidermis in response to UV-B. Significantly decreased stomata width and significantly increased stomata density of leaf abaxial epidermis in M. chinensis were also observed. The stomata density of abaxial epidermis of C. concinna was remarkably increased by enhanced UV-B. The height and branch biomass of A. mangium and the height of S. superba were reduced visibly by enhanced UV-B. The four plant species could be classified into three groups of UV-B sensitiveness by hierarchical cluster analysis. A. mangium was sensitive to enhanced UV-B, while C. concinna showed more tolerance.  相似文献   

11.
The effects of five different N-sources (KNO3 + NH4NO3 = control, KNO3, NH4NO3, NH4H2PO4, L-alanine) on growth, nutritional status, chlorophyll (Chl) content, and photosynthetic parameters of the apple rootstock MM 106 shoots cultured in vitro were investigated. In comparison to all the other treatments, control explants grown on a MS medium containing KNO3 + NH4NO3 had the highest fresh mass, Chl content, net photosynthetic rate, transpiration rate, and stomatal conductance.  相似文献   

12.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2003,41(3):349-355
Radiation quality was an important environmental cue to stimulate seed germination in Acacia mangium. The photo-synthetic CO2 assimilation rate, dark respiration rate, total biomass, and relative growth rate of seedlings grown under monochromatic radiation were significantly lower than those of seedlings grown under full spectrum radiation. Blue and red radiation induced shade-avoidance and shade-tolerant responses of A. mangium seedlings, respectively.  相似文献   

13.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

14.
Abstract

Soil salinity is one of the major factors responsible for the low productivity of crop plants and has become an increasing threat for agriculture. In this context, the selection of tolerant genotype/s may be one of the remedies. Keeping this in view, the effect of NaCl (0–120 mM) stress on shoot length (SL) plant?1, area (A) leaf?1, leaf area index (LAI), fresh weight (FW) and dry weight (DW) plant?1, stomatal conductance (gs), net photosynthetic rate (P N), total chlorophyll (Chl) content, malondialdehyde (MDA) content, sensitivity rate index (SRI), leaf- nitrogen (N), potassium (K) and sodium (Na) content, leaf-K/Na ratio, nitrate reductase (NR: EC.1.6.6.1) and ATP-sulphurylase (ATP-S: EC.2.7.7.4) activities and proline (Pro) and glycinebetaine (GB) content of ten genotypes of Brassica juncea L. was studied at 55 and 65 days after sowing (DAS). NaCl treatments decreased all the above parameters, except Pro, GB, MDA, Na and SRI at both stages. Salt stress resulted in accumulation of Pro and GB, in all genotypes. The magnitude of increase in both osmolytes (Pro and GB) was higher in genotype G8 than the other genotypes. Salt stress increased MDA and Na content while it decreased Chl, N and K content and K/Na ratio, Chl content, NR and ATP-S activities in all genotypes. But the magnitude of increase in MDA and Na content and decrease in SL plant?1, A leaf?1, LAI, P N, gs, Chl content and NR and ATP-S activities in genotype G8 was more than that of other genotypes. These results suggest that the salt-tolerant genotype may have better osmotic adjustment and protection from free radicals by increasing the accumulation of Pro and GB content with overproduction of N and K and higher K/Na, NR and ATP-S activities under salinity stress.  相似文献   

15.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

16.
An introduced plantation tree species, Acacia mangium Willd., is becoming invasive in the Brunei region of Borneo. To examine its invasive potential, a greenhouse, additive series experiment (target–neighbour) involving seedlings of A. mangium and those of a common native heath-forest (kerangas), Melastoma beccarianum Cogn. was carried out under low and high light regimes in intra- and interspecific combinations over a 6-month period. Significant variations in growth parameters (other than biomass allocation patterns) existed amongst seedlings from different treatments. A major part of this variation in growth could be attributed to the main factors of target species, neighbour species, and competition (seedling density). For the growth variables examined, the target–species response was not consistent across light regimes. Under high light conditions, Acacia was the better competitor; the Lotka-Volterra competition coefficient effect of Melastoma on Acacia was lower (=0.30) than the effect of Acacia on Melastoma (=0.54). However, the reverse occurred under low light conditions with Melastoma gaining the upper hand (=1.45 and =0.44). These results show that light (and hence disturbance) can strongly influence the pattern and intensity of both intra- and interspecific competition between invasive and local flora species. Relatively intact forest is unlikely to be invaded by Acacia trees (as they are poor competitors under this scenario). On the other hand, the Acacia trees can easily invade disturbed forests, especially those prone to recurring drought and fire, and over time convert the habitats to nearly monospecific stands, as is presently being observed in Brunei.  相似文献   

17.
To verify the important role of nitrogen in detoxifying plants from heavy metals in Populus, the influence of nitrogen and cadmium on growth, chlorophyll (Chl) synthesis, and the expression of the Glutamine synthetase gene (GS2) were studied in poplar plants. Experiments were carried out in potted plants treated with (NH4)2CO3, Cd(NO3)2, CdCl2 and CdCl2 plus (NH4)2CO3. After treatment, plant height, biomass, chlorophyll content, the precursors content and GS2 were investigated. Results showed that the plants treated with cadmium showed toxicity symptoms, decrease in growth and Chl content. Cd inhibited Chl synthesis seriously by blocking the site located on the steps between UrogenIII and Coprogen III. However, the plants treated with cadmium and nitrogen grew well without any toxicity symptoms. Nitrogen supplement can alleviate Cd inhibition on chlorophyll synthesis by unblocking the pathway. The results indicated that nitrogen can effectively alleviate cadmium toxicity to poplar plants.  相似文献   

18.
We evaluated the growth and development of the medicinal species Pothomorphe umbellata (L.) Miq. under different shade levels (full sun and 30, 50, and 70 % shade, marked as I100, I70, I50, and I30, respectively) and their effects on gas exchange and activities of antioxidant enzymes. Photosynthetically active radiation varied from 1 254 μmol m−2 s−1 at I100 to 285 μmol m−2 s−1 at I30. Stomatal conductance, net photosynthetic rate, and relative chlorophyll (Chl) content were maximal in I70 plants. Plants grown under I100 produced leaves with lower Chl content and signs of chlorosis and necrosis. These symptoms indicated Chl degradation induced by the generation of reactive oxygen species. Stress related antioxidant enzyme activities (Mn-SOD, Fe-SOD, and Cu/Zn-SOD) were highest in I100 plants, whereas catalase activity was the lowest. Hence P. umbellata is a shade species (sciophyte), a feature that should be considered in reforestation programs or in field plantings for production of medicinal constituents.  相似文献   

19.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (P N), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded.  相似文献   

20.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号