首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila, the Jun-N-terminal Kinase-(JNK) signaling pathway is required for epithelial cell shape changes during dorsal closure of the embryo. In the absence of JNK pathway activity, as in the DJNKK/hemipterous (hep) mutant, the dorsolateral ectodermal cells fail both to elongate and move toward the dorsal midline, leading to dorsally open embryos. We show here that hep and the JNK pathway are required later in development, for correct morphogenesis of other epithelia, the imaginal discs. During metamorphosis, the imaginal discs undergo profound morphological changes, giving rise to the adult head and thoracic structures, including the cuticle and appendages. hep mutant pupae and pharate adults show severe defects in discs morphogenesis, especially in the fusion of the two lateral wing discs. We show that these defects are accompanied by a loss of expression of puckered (puc), a JNK phosphatase-encoding gene, in a subset of peripodial cells that ultimately delineates the margins of fusing discs. In further support of a role of puc in discs morphogenesis, pupal and adult hep phenotypes are suppressed by reducing puc function, indicative of a negative role of puc in disc morphogenesis. Furthermore, we show that the small GTPase Dcdc42, but not Drac1, is an activator of puc expression in a hep-dependent manner in imaginal discs. Altogether, these results demonstrate a new role for the JNK pathway in epithelial morphogenesis, and provide genetic evidence for a role of the peripodial membrane in disc morphogenesis. We discuss a general model whereby the JNK pathway regulates morphogenesis of epithelia with differentiated edges.  相似文献   

2.
3.
Ren N  Zhu C  Lee H  Adler PN 《Genetics》2005,171(2):625-638
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.  相似文献   

4.
 Ecdysteroids regulate insect metamorphosis through the edysone receptor complex, a heterodimeric nuclear receptor consisting of the ecdysone receptor (EcR) and its partner ultraspiracle (USP). Differentiation in the Drosophila ovary at metamorphosis correlates with colocalization of USP and the EcR-A isoform in all but one of eight mesoderm-derived somatic cell types. The one exception is the larval terminal filament (TF) cells, in which only USP is detectable during cell differentiation. In cells destined to form the basal stalks and anterior oviduct, USP colocalizes with what appears to be the EcR-B2 isoform. Flies heterozygous for a deletion of the EcR gene exhibit several defects in ovarian morphogenesis, including a heterochronic delay in the onset of terminal filament differentiation. Flies heterozygous for a strong usp allele exhibit accelerated TF differentiation. Flies simultaneously heterozygous for both EcR and usp have additional phenotypes, including several heterochronic shifts, delayed initiation and completion of terminal filament morphogenesis and delayed ovarian differentiation during the first day of metamorphosis. Terminal filament morphogenesis is severely disrupted in homozygous usp clones. Our results demonstrate that proper expression of the ecdysone receptor complex is required to maintain the normal progression and timing of the events of ovarian differentiation in Drosophila. These findings are discussed in the context of a developmental and evolutionary role for the ecdysone receptor complex in regulating the timing of ovarian differentiation in dipteran insects. Received: 12 February 1998 / Accepted: 5 May 1998  相似文献   

5.
In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A transition, is conserved in Drosophila melanogaster and other invertebrates. In Drosophila, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) control the timing of the transition from larval to pupal to adult stages. To test whether let-7 expression is regulated by ecdysone in Drosophila, we used Northern blot analysis to examine the effect of altered ecdysone levels on let-7 expression in mutant animals, organ cultures, and S2 cultured cells. Experiments were conducted to test the role of Broad-Complex (BR-C), an essential component in the ecdysone pathway, in let-7 expression. We show that ecdysone and BR-C are required for let-7 expression, indicating that the ecdysone pathway regulates the temporal expression of let-7 in Drosophila. These results demonstrate an interaction between steroid hormone signaling and the heterochronic pathway in insects.  相似文献   

6.
Paul N. Adler 《Fly》2017,11(3):194-199
The exoskeleton of insects and other arthropods is a very versatile material that is characterized by a complex multilayer structure. In Sobala and Adler (2016) we analyzed the process of wing cuticle deposition by RNAseq and electron microscopy. In this extra view we discuss the unique aspects of the envelope the first and most outermost layer and the gene expression program seen at the end of cuticle deposition. We discussed the role of undulae in the deposition of cuticle and how the hydrophobicity of wing cuticle arises.  相似文献   

7.
8.
The Drosophila wing is a primary model system for studying the genetic control of epithelial Planar Cell Polarity (PCP). Each wing epithelial cell produces a distally pointing hair under the control of the Frizzled (Fz) PCP signaling pathway. Here, we show that Fz PCP signaling also controls the formation and orientation of ridges on the adult wing membrane. Ridge formation requires hexagonal cell packing, consistent with published data showing that Fz PCP signaling promotes hexagonal packing in developing wing epithelia. In contrast to hair polarity, ridge orientation differs across the wing and is primarily anteroposterior (A-P) in the anterior and proximodistal (P-D) in the posterior. We present evidence that A-P ridge specification is genetically distinct from P-D ridge organization and occurs later in wing development. We propose a two-phase model for PCP specification in the wing. P-D ridges are specified in an Early PCP Phase and both A-P ridges and distally pointing hairs in a Late PCP Phase. Our data suggest that isoforms of the Fz PCP pathway protein Prickle are differentially required for the two PCP Phases, with the Spiny-legs isoform primarily active in the Early PCP Phase and the Prickle isoform in the Late PCP Phase.  相似文献   

9.
Tensin is an actin-binding protein that is localized in focal adhesions. At focal adhesion sites, tensin participates in the protein complex that establishes transmembrane linkage between the extracellular matrix and cytoskeletal actin filaments. Even though there have been many studies on tensin as an adaptor protein, the role of tensin during development has not yet been clearly elucidated. Thus, this study was designed to dissect the developmental role of tensin by isolating Drosophila tensin mutants and characterizing its role in wing development. The Drosophila tensin loss-of-function mutations resulted in the formation of blisters in the wings, which was due to a defective wing unfolding process. Interestingly, by(1)-the mutant allele of the gene blistery (by)-also showed a blistered wing phenotype, but failed to complement the wing blister phenotype of the Drosophila tensin mutants, and contains Y62N/T163R point mutations in Drosophila tensin coding sequences. These results demonstrate that by encodes Drosophila tensin protein and that the Drosophila tensin mutants are alleles of by. Using a genetic approach, we have demonstrated that tensin interacts with integrin and also with the components of the JNK signaling pathway during wing development; overexpression of by in wing imaginal discs significantly increased JNK activity and induced apoptotic cell death. Collectively, our data suggest that tensin relays signals from the extracellular matrix to the cytoskeleton through interaction with integrin, and through the modulation of the JNK signal transduction pathway during Drosophila wing development.  相似文献   

10.
Summary We have examined the metamorphosis of the wing imaginal disc of Drosophila during culture in vitro in the continuous presence of 20-hydroxy ecdysone (0.1 g/ ml). We find that the sequence of cellular changes in the wing blade during culture closely match those occurring in situ, involving two periods at which the dorsal and ventral surfaces are joined only by cell processes containing trans-alar microtubule arrays. Good pupal and imaginal cuticle secretion is found in this system.  相似文献   

11.
Studies of Drosophila metamorphosis have been hampered by our inability to visualize many of the remarkable changes that occur within the puparium. To circumvent this problem, we have expressed GFP in specific tissues of living prepupae and pupae and compiled images of these animals into time-lapse movies. These studies reveal, for the first time, the dynamics and coordination of morphogenetic movements that could only be inferred from earlier studies of dissected staged animals. We also identify responses that have not been described previously. These include an unexpected variation in some wild-type animals, where one of the first pairs of legs elongates in the wrong position relative to the second pair of legs and then relocates to its appropriate location. At later stages, the antennal imaginal discs migrate from a lateral position in the head to their final location at the anterior end, as leg and mouth structures are refined and the wings begin to fold. The larval salivary glands translocate toward the dorsal aspect of the animal and undergo massive cell death following head eversion, in synchrony with death of the abdominal muscles. These death responses fail to occur in rbp(5) mutants of the Broad-Complex (BR-C), and imaginal disc elongation and eversion is abolished in br(5) mutants of the BR-C. Leg malformations associated with the crol(3) mutation can be seen to arise from defects in imaginal disc morphogenesis during prepupal stages. This approach provides a new tool for characterizing the dynamic morphological changes that occur during metamorphosis in both wild-type and mutant animals.  相似文献   

12.
13.
14.
15.
During Drosophila oogenesis, the formation of the egg respiratory appendages and the micropyle require the shaping of anterior and dorsal follicle cells. Prior to their morphogenesis, cells of the presumptive appendages are determined by integrating dorsal-ventral and anterior-posterior positional information provided by the epidermal growth factor receptor (EGFR) and Decapentaplegic (Dpp) pathways, respectively. We show here that another signaling pathway, the Drosophila Jun-N-terminal kinase (JNK) cascade, is essential for the correct morphogenesis of the dorsal appendages and the micropyle during oogenesis. Mutant follicle cell clones of members of the JNK pathway, including DJNKK/hemipterous (hep), DJNK/basket (bsk), and Djun, block dorsal appendage formation and affect the micropyle shape and size, suggesting a late requirement for the JNK pathway in anterior chorion morphogenesis. In support of this view, hep does not affect early follicle cell patterning as indicated by the normal expression of kekkon (kek) and Broad-Complex (BR-C), two of the targets of the EGFR pathway in dorsal follicle cells. Furthermore, the expression of the TGF-beta homolog dpp, which is under the control of hep in embryos, is not coupled to JNK activity during oogenesis. We show that hep controls the expression of puckered (puc) in the follicular epithelium in a cell-autonomous manner. Since puc overexpression in the egg follicular epithelium mimics JNK appendages and micropyle phenotypes, it indicates a negative role of puc in their morphogenesis. The role of the JNK pathway in the morphogenesis of follicle cells and other epithelia during development is discussed.  相似文献   

16.
The function of PS integrins in Drosophila wing morphogenesis.   总被引:3,自引:0,他引:3  
Integrins are found on many cell types during the development of most organisms. In Drosophila their functions can be analysed genetically. An analysis of lethal mutations in a PS integrin gene showed that the integrins were required for muscle attachment and for certain cell sheet migrations during embryogenesis. In this paper we use viable mutations in integrin component genes to look at integrin function in the later stages of development of one adult structure, the wing. We show that two known viable mutations, one which has its primary effect on the fly's escape response, the other on wing morphogenesis, are mutations in the beta and PS2alpha subunits, respectively, of the PS integrins. The mutation non-jumper (mys(mj42)) in the beta subunit leads to wasting of the thoracic jump muscles. Flies in which the dosage of this allele is reduced (and no wildtype copy is present) show defects also in wing morphogenesis. The two surfaces of the wing fail to connect properly, resulting in 'blistering' of the wing and the formation of extra crossveins. The mutation in the gene for the PS2alpha integrin subunit, inflated, also leads to a failure in wing surface apposition and consequent wing blistering. When the two mutations are combined, the mutant phenotype is greatly enhanced. Thus, one of the roles of the PS integrins in late Drosophila development is to ensure the correct apposition and patterning of the wing epithelia.  相似文献   

17.
Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.  相似文献   

18.
19.
The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila   总被引:1,自引:0,他引:1  
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.  相似文献   

20.
The development of new, adult-specific axonal pathways in the central nervous system (CNS) of insects during metamorphosis is still largely uncharacterized. Here we used axonal labeling with DiI to describe the timing and pattern of growth of sensory axons originating in the wing of Drosophila as they establish their adult projection pattern in the CNS during pupal life. The wing of Drosophila carries a small number of readily identifiable sensory organs (sensilla) whose neurons are located in the periphery and whose axons travel along specific routes within the adult CNS. The neurons are born and undergo axonogenesis in a characteristic order. The order of axon arrival in the CNS appears to be the same as that of their development in the periphery. Within the CNS, the formation of four prominent axon bundles leading to distant termination sites is followed by the formation of a compact axon termination site near the point of wing nerve entry into the CNS. This sensillum-specific pattern persists into adulthood without discernible modification. We also find a small number of axons filled with DiI prior to the formation of the four permanent bundles. We have only been able to fill them for a few hours in early pupal life and therefore consider them to be transient. The bundles of wing sensory axons travel within tracts that contain other axons as well. Using immunocytochemistry, the tracts start to be histologically identifiable at around 12 h after pupariation (AP), and grow substantially as metamorphosis proceeds. Wing sensory neurons are found in the tracts by 18–20 h AP and the full adult pattern is established by 48 h AP. When sensory axons first enter the CNS, they fan out in the region where their appropriate tracts are located, but they do not wander extensively. They quickly form bundles that become increasingly compact over time. Calculations show that the rate of axon extension within the CNS varies from bundle to bundle and is equal to or greater than that of the same axons growing through wing tissue. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号