首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat denaturation of DNA in situ, in unbroken cells, was studied in relation to the cell cycle. DNA in metaphase cells denatured at lower temperatures (8 degrees-10 degrees C lower) than DNA in interphase cells. Among interphase cells, small differences between G1, S, and G2 cells were observed at temperatures above 90 degrees C. The difference between metaphase and interphase cells increased after short pretreatment with formaldehyde, decreased when cells were heated in the presence of 1 mM MgCl2, and was abolished by cell pretreatment with 0.5 N HCl. The results suggest that acid-soluble constituents of chromatin confer local stability to DNA and that the degree of stabilization is lower in metaphase chromosomes than in interphase nuclei. These in situ results remain in contrast to the published data showing no difference in DNA denaturation in chromatin isolated from interphase and metaphase cells. It is likely that factors exist which influence the stability of DNA in situ are associated with the super-structural organization of chromatin in intact nuclei and which are lost during chromatin isolation and solubilization. Since DNA denaturation is assayed after cell cooling, there is also a possibility that the extent of denatured DNA may be influenced by some factors that control strand separation and DNA reassociation. The different stainability of interphase vs. metaphase cells, based on the difference in stability of DNA, offers a method for determining mitotic indices by flow cytofluorometry, and a possible new parameter for sorting cells in metaphase.  相似文献   

2.
In this study, chromosome number and ploidy levels of Ipheion uniflorum cv. "Wisley Blue" (spring starflower) were determined. In meristematic root tip cells, chromosome number was found as 2n = 12 and 4n = 24. The ratios of diploid and tetraploid cells were found as 80.74% and 19.26%, respectively. In differentiated root tissues and mature leaf tissues ploidy levels were analysed by flow cytometry and polysomaty were found in both organs. In differentiated root tissues, ploidy levels were found as 2C, 4C, 8C and 16C DNA. In root tissues percentages of 2C, 4C, 8C and 16C nuclear DNA content were observed as 57.2%, 33.1%, 2.47% and 7.23%, respectively. In mature leaf tissues, ploidy levels were determined 2C, 4C, 8C and 16C DNA. In this tissue the frequency of 4C DNA was found very higher (74.3%) and 2C DNA content was determined as 19.2%. In mature leaf tissue, 8C and 16C nuclear DNA contents were observed as 2.72% and 3.78%, respectively. When nuclear DNA contents in leaves and roots were compared, an apparent difference in 2C and 4C DNA contents was found.  相似文献   

3.
4.
DNA of rodlet cells and erythrocytes from three species of freshwater teleosts, Semotilus atromaculatus atromaculatus, Catostomus commersoni and Cyprinus carpio , was stained with the Feulgen reaction and examined by microdensitometry. Rodlet cells showed nuclear DNA content significantly different from erythrocytes of the same species, but the difference was less than a factor of C, assuming that erythrocytes reflect the normal 2C genome of somatic cells. In two species, S. atromaculatus and C. carpio , the rodlet cell nuclei contained less DNA than the erythrocytes; in C. commersoni they contained more. The identity of the rodlet cell is unknown; the results of these experiments lead to the rejection of the hypothesis that rodlet cells and erythrocytes of a species have the same DNA content, i.e. that the rodlet cell is a normal somatic component of fish tissue.  相似文献   

5.
Summary Cells in developing Artemia franciscana SFB demonstrated tissue-specific differences in DNA content, as determined by fluorescence intensity of bisbenzimide-stained nuclei and by nuclear area. The general epidermis comprised proliferating diploid (2C) cells. The setal cells had 4C–8C DNA content and did not divide during the first two instars. Salt gland cells were polyploid (>8C) and also did not undergo mitosis. Neural cells in the brain were diploid and were replicating. Cells in the thorax region of the gut had a 4C–8C DNA content and were proliferating. The muscle cells in the cephalic appendages contained 2C non-replicating nuclei. Only diploid epidermal cells were involved in segment morphogenesis. There was no difference in number of chromosomes (n=42) in the epidermal cells and the gut cells, indicating that the tissue-specific endopolyploidy was due to endoreduplication.  相似文献   

6.
DNA-dependent ATPase activities in crude extracts prepared from HeLa cells were separated into five peaks by fast protein liquid chromatography Mono Q column chromatography. Similar elution profiles were observed with the extracts from human cells normal in repair and xeroderma pigmentosum cells belonging to complementation groups A through G except for group C. An alteration in elution of one of the five ATPases, designated DNA-dependent ATPase Q1, was observed with a cell line of complementation group C. This alteration was observed with all tested cell lines that belonged to group C. ATPase Q1 in HeLa cell extracts exhibited about 2-fold higher activity with ultraviolet light-irradiated DNA as compared to that with non-irradiated DNA, whereas little difference in the effects of two DNAs was observed with the ATPase activities in the extract from group C cells.  相似文献   

7.
The kinetics of the reassociation fo DNA from ascites hepatoma cells has been studied. The curve exhibited three zones corresponding to 'fast', 'intermediate' and 'slow' speeds of DNA reassociation. The difference was observed in the DNA reassociation curves of the control and irradiated (1500 rad) cells which was particularly expressed in the 'slow' zone (10(2) less than C0t less than 10(4). The same dose, however, does not qualitatively effect the secondary DNA structure, which was estimated by the method of thermal elution from the hydroxyapatite column.  相似文献   

8.
After treatment with n-sodium butyrate for 7 days, the inhibition of growth rate of human gastric adenocarcinoma cell (MGc 80-3) in culture reaches 50.7%. About 90% of the cancer cells treated with the drug undergo obvious differentiation, and their ultrastructure is also changed. Moreover, the cancer cells which have hyperdiploid chromosomes increase from 78% to 96%; on the contrary, the percentage of hypertriploid cells decreases from 6% to 2%, while that of hypertetraploid cells diminishes from 14% to 2%. By using the combination of 3H-TdR autoradiography and Feulgen cytophotometry to measure the cellular DNA content of unlabelled cells (G1), it is shown that the DNA amount in the experimental group is lower than that in the control group. Furthermore, the DNA content of undifferentiated cells in the unlabelled cells (G1) of the experimental group is hyperhexaploid in amount (D1 = 3.76 and 3.56), and about 90% undifferentiated cells have a DNA value of over 6 C. On the other hand, the differentiated cells in the unlabelled cells on the above same slide have near-tetraploid DNA values (D1 = 2.03 and 1.99), and a DNA content below 4 C is found in about 60% differentiated cells. The difference in DNA amount between these two categories of cells is statistically significant. The results mentioned above suggest that although the amount of genetic material in the morphologically differentiated cells has markedly decreased, these cells still do not represent normal diploid cells.  相似文献   

9.
Summary Scanning cytophotometry following Feulgen-staining was used to determine nuclear DNA content in many differentiated tissues of nine cultivars, hybrids or selfed lines ofHelianthus annuus. Apart from such ephemeral tissues as endosperm and anther tapetum, it was found that tissue differentiation in sunflower occurs in the diploid condition, cells being arrested in the DNA presynthetic phase (G1). In certain cases, however, the nuclear DNA content of differentiated G1 cells does not exactly match the 2C DNA content found in meristematic cells, but may be either higher or lower. In endosperm and anther tapetum cells, nuclear DNA content may be as high as 24 C and 32 C, respectively. Cytological and autoradiographic analyses after3H-thymidine incorporation reveal that polyploidy in the tapetal cells is due to chromosome endoreduplication. No detectable difference between male-fertile and male-sterile plants exists as far as occurrence and level of cell polyploidy are concerned. The results are discussed in the context of previous investigations on the nuclear condition of differentiatedHelianthus annuus tissue.  相似文献   

10.
Alterations in cell cycle regulation underlie the unrestricted growth of neoplastic astrocytes. Chemotherapeutic interventions of gliomas have poor prognostic outcomes due to drug resistance and drug toxicity. Here, we examined the in vitro growth kinetics of C6 glioma (C6G) cells and primary astrocytes and their responses to 2 phase-specific inhibitors, lovastatin and hydroxyurea. C6G cells demonstrated a shorter G1 phase and an earlier peak of DNA synthesis in S phase than primary astrocytes. As C6G cells and primary astrocytes re-entered the cell cycle in the presence of lovastatin or hydroxyurea, they exhibited different sensitivities to the inhibitory effects of these agents, as measured by [3H]-thymidine incorporation. Compared to primary astrocytes, C6G cells were more sensitive to lovastatin, but less sensitive to hydroxyurea. Studies using 2 different paradigms of exposure uncovered dramatic differences in the kinetics of DNA synthesis inhibition by these 2 agents in C6G cells and primary astrocytes. One notable difference was the ability of C6G cells to more easily recover from the inhibitory effects of hydroxyurea following short exposure. Our results provide insight into C6 glioma drug resistance as well as the inhibitory effects of these 2 phase-specific inhibitors and their chemotherapeutic potential.  相似文献   

11.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

12.
应用真彩色医学图像分析技术, 对90 例甲状腺肿瘤(其中甲状腺腺瘤10 例, 不典型腺瘤15 例,乳头状腺癌25 例, 滤泡癌15 例, 髓样癌15 例, 未分化癌10 例) 细胞核DNA含量进行了分析。结果显示,甲状腺腺瘤组与各型甲状腺癌比较均有显著性差异(P< 001),甲状腺腺瘤组同不典型腺瘤组比较无统计学意义(P> 005)。甲状腺癌随组织分化程度的不同, DNA 含量明显增加, 多为高倍异倍体细胞, DNA直方图明显右移, 峰值主要位于≥5C处; 甲状腺腺瘤组DNA含量较低, 多为低倍整倍体细胞, DNA 直方图峰值位于2C- 4C处; 不典型腺瘤组DNA含量介于上述二者之间, DNA 直方图逐渐右移。表明DNA倍性程度与肿瘤的增殖程度呈正相关, 高倍异倍体细胞随肿瘤恶性程度的增高而增多。作者认为DNA原位图像定量分析可为甲状腺肿瘤的诊断、分级及早期发现癌变趋势提供一个可靠的参考指标  相似文献   

13.
A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg2+. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. The maximal difference in fluorescence between untreated and HN2-treated cells was observed after heating at 100 degrees C for 5 min in PBS containing 1.25 mM MgCl2. Higher concentrations of MgCl2 inhibited MOAB binding to HN2-treated cells and heating at lower concentrations induced binding to control cells. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl2. Thus, the presence of phosphates and MgCl2 during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S1 nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. Specific reactivity of MOAB F7-26 with deoxycytidine was established by avidin-biotin ELISA. Single-stranded conformation was necessary for the binding of MOAB to deoxycytidine on the DNA molecule. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.  相似文献   

14.
Hyperthermia can modulate the action of many anticancer drugs, and DNA repair processes are temperature-dependent, but the character of this dependence in cancer and normal cells is largely unknown. This subject seems to be worth studying, because hyperthermia can assist cancer therapy. A 1-h incubation at 37 degrees C of normal human peripheral blood lymphocytes and human myelogenous leukemia cell line K562 with 0.5 microM doxorubicin gave significant level of DNA damage as assessed by the alkaline comet assay. The cells were then incubated in doxorubicin-free repair medium at 37 degrees C or 41 degrees C. The lymphocytes incubated at 37 degrees C needed about 60 min to remove completely the damage to their DNA, whereas at 41 degrees C the time required for complete repair was shortened to 30 min. There was also a difference between the repair kinetics at 37 degrees C and 41 degrees C in cancer cells. Moreover, the kinetics were different in doxorubicin-sensitive and resistant cells. Therefore, hyperthermia may significantly affect the kinetics of DNA repair in drug-treated cells, but the magnitude of the effect may be different in normal and cancer cells. These features may be exploited in cancer chemotherapy to increase the effectiveness of the treatment and reduce unwanted effects of anticancer drugs in normal cells and fight DNA repair-based drug resistance of cancer cells.  相似文献   

15.
Cytoplasmic microtubules of animal cells catastrophically depolymerize upon entry into mitosis but in higher plants there is a longer transition during which cortical microtubules form an increasingly narrow preprophase band, and the chromatin gradually condenses. Progression towards mitosis in onion root tip cells was analysed using a CCD camera and image processing to quantify fluorescence staining by the monoclonal antibody MPM-2, which recognizes mitotic phosphoproteins in a range of eukaryotic cells. MPM-2 fluorescence, which was predominantly nuclear, was categorized relative to the stage of the DNA cycle (using DAPI), and to the microtubule cycle (using anti-tubulin) in individual cells. Cells with the characteristic interphase cortical microtubule arrays had a bimodal distribution of DAPI fluorescence, indicating that some were in G1 (2C DNA) whilst the double value suggested the others to be in G2 (4C). There was no difference in MPM-2 fluorescence between 2C and 4C cells possessing the cortical array in which microtubules were evenly distributed. However, in 4C cells possessing a preprophase band MPM-2 values doubled; this relationship applied not only to tight PPBs but to early, broad PPBs in which the individual microtubules could still be distinguished. Since alkaline phosphatase abolished MPM-2 reactivity it is concluded that mitotic phosphoproteins do not necessarily begin to accumulate in G2 per se , but during that part of G2 when the preprophase band first becomes recognizable as a distinct entity.  相似文献   

16.
The temperature-sensitive events which prevent Cryptococcus albidus from growing at 37 C were investigated. Cultures incubated at 37 C immediately after inoculation did not increase in optical density nor in cell numbers, and by 24 h 90% of cells in such cultures were deformed and dead. When cultures in log phase were shifted from 23 to 37 C the optical density increased but the cell numbers did not. Morphological observations revealed that the increase in turbidity at 37 C represented enlargement and distortion of cells without appreciable replication. Uptake and incorporation of (14)C-leucine were similar at 23 and 37 C. There was no difference in (14)CO(2) evolution from cells at either temperature. Uptake and incorporation of adenine-8-(14)C into RNA was slightly lower in cells incubated at 37 C. There was, however, a 60% reduction in incorporation of adenine-8-(14)C into DNA after 3 hr at 37 C. Nuclear staining revealed that nuclear migration did not occur in cells incubated at 37 C. Thus the data indicate that both adenine incorporation into DNA and nuclear migration prior to nuclear division by C. albidus are temperature sensitive.  相似文献   

17.
The stalked bacterium Caulobacter bacteroides, which displays a series of developmental changes during its life cycle, was shown to contain the methylated deoxyribonucleic acid (DNA) nucleotide bases N(6)-methyladenine and 5-methylcytosine as well as the enzymes required for the synthesis of these bases. A difference in the specific activity of these enzymes was observed between swarmer cells, which are low in activity, and stalked cells, which are high in activity. This difference was not reflected in the methylation patterns in the DNA of the two cell types since C. bacteroides DNA is essentially completely methylated with respect to C. bacteroides methylases.  相似文献   

18.
The purpose of this study was to investigate the role of DNA and chromosome repair in determining the difference in radiosensitivity between a radiosensitive murine leukemic lymphoblastoid cell line, L5178Y-S, and its radioresistant counterpart, L5178Y-R. Populations of cells in the G1 or G2 phase of the cell cycle were obtained by centrifugal elutriation and irradiated with X-ray doses up to 10 Gy and allowed to repair at 37 degrees C for various periods. The kinetics of DNA double-strand break repair was estimated using the DNA neutral filter elution method, and the kinetics of chromosome repair was measured by premature chromosome condensation. L5178Y-S cells exhibited decreased repair rates and limited repair capacity at both the DNA and chromosome level in both G1 and G2 phases when compared to L5178Y-R cells. For the repair-competent L5178Y-R cells, the rate of DNA repair was similar in G1 and G2 cells and exhibited both fast and slow components. While the kinetics of chromosome break repair in G1 cells was similar to that of DNA repair, chromosome repair in G2 cells had a diminished fast component and lagged behind DNA repair in terms of fraction of damage repaired. Interestingly, concomitant with a diminished repair capacity in L5178Y-S cells, the number of chromatid exchanges in G2 cells increased with time, whereas it remained constant with repair time in L5178Y-R cells. These results suggest that the basis for the exceptional radiosensitivity of L5178Y-S cells is a defect in the repair of both DNA double-strand breaks and chromosome damage.  相似文献   

19.
培养的人胃腺癌MGc 80-3细胞经过正丁酸钠处理7天后,生长抑制率达50.7%,约有90%的细胞形态发生分化,其超微结构亦有显著改变。而且,在染色体数目上,超二倍体细胞由对照组的78%增加到实验组的96%,超三倍体和超四倍体细胞则分别从6%和14%下降至2%。同时应用~3H-TdR放射自显影和福尔根细胞光度法测定未标记细胞(G_1期)DNA含量,结果显示实验组比对照组降低了。而且在实验组的同一制片中,未分化细胞DNA含量平均为超六倍体值(DI=3.67和3.56),其中90%的细胞超过6C;分化细胞DNA含量则平均为近四倍体值(DI=2.03和1.99),其中近60%的细胞少于4C。两者差异统计显著,表明形态分化的人胃腺癌细胞的遗传物质含量明显减少,但这些细胞并非就是正常二倍体细胞。  相似文献   

20.
In the fluorescent-flow cytophotometric measurement of cellular DNA content the DNA distributions usually have two peaks. The second peak, which corresponds to the 4C DNA content of G2 and M cells, is often positioned at lower values of DNA content than twice that of the 2C DNA peak which contains G1 cells. Computerized numerical analyses were performed on artificial DNA distributions in which the proportion of S-phase cells was varied. It was demonstrated that the contribution of late S-phase cells to the 4C DNA peak in the histogram shifts the second peak to a position below twice the 2C DNA value. Also, increasing the coefficient of variation of the DNA measurement shifts the second peak position to lower values. A group of 33 DNA distribution histograms was found to have an average G2/G1 peak position ratio of 1.90, in keeping with typical values obtained from the numerical analysis of the artificial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号