共查询到20条相似文献,搜索用时 0 毫秒
1.
Hox genes are highly conserved segmental identity genes well known for their complex expression patterns and divergent targets. Here we present an analysis of cis-regulatory elements in the Caenorhabditis elegans Hox gene egl-5, which is expressed in multiple tissues in the posterior region of the nematode. We have utilized phylogenetic footprinting to efficiently identify cis-regulatory elements and have characterized these with gfp reporters and tissue-specific rescue experiments. We have found that the complex expression pattern of egl-5 is the cumulative result of the activities of multiple tissue or local region-specific activator sequences that are conserved both in sequence and near-perfect order in the related nematode Caenorhabditis briggsae. Two conserved regulatory blocks analyzed in detail contain multiple sites for both positively and negatively acting factors. One of these regions may promote activation of egl-5 in certain cells via the Wnt pathway. Positively acting regions are repressed in inappropriate tissues by additional negative pathways acting at other sites within the promoter. Our analysis has allowed us to implicate several new regulatory factors significant to the control of egl-5 expression. 相似文献
2.
3.
Mutations in tcl-2 cause defects in the specification of the fates of the descendants of the TL and TR blast cells, whose polarity is regulated by lin-44/Wnt and lin-17/frizzled, during Caenorhabditis elegans development. In wild-type animals, POP-1/TCF/LEF, is asymmetrically distributed to the T cell daughters, resulting in a higher level of POP-1 in the nucleus of the anterior daughter. The POP-1 asymmetric distribution is controlled by lin-44 and lin-17. However, in tcl-2 mutants, POP-1 is equally distributed to T cell daughters as is observed in lin-17 mutants, indicating that, like lin-17, tcl-2 functions upstream of pop-1. In addition, tcl-2 mutations cause defects in the development of the gonad and the specification of fate of the posterior daughter of the P12 cell, both of which are controlled by the Wnt pathway. Double mutant analyses indicate that tcl-2 can act synergistically with the Wnt pathway to control gonad development as well as P12 descendant cell fate specification. tcl-2 encodes a novel protein. A functional tcl-2::gfp construct was weakly expressed in the nuclei of the T cell and its descendants. Our results suggest that tcl-2 functions with Wnt pathways to control T cell fate specification, gonad development, and P12 cell fate specification. 相似文献
4.
During Caenorhabditis elegans development, the process of epidermal elongation converts the bean-shaped embryo into the long thin shape of the larval worm. Epidermal elongation results from changes in the shape of epidermal cells, which in turn result from changes in the epidermal cytoskeleton, the extracellular matrix, and in cell-matrix adhesion junctions. Here, we review the roles of cytoskeletal filament systems in epidermal cell shape change during elongation. Genetic and cell biological analyses have established that all three major cytoskeletal filament systems (actin microfilaments, microtubules, and intermediate filaments (IFs)) play distinct and essential roles in epidermal cell shape change. Recent work has also highlighted the importance of communication between these systems for their integrated function in epidermal elongation. Epidermal cells undergo reciprocal interactions with underlying muscle cells, which regulate the position and function of IF-containing cell-matrix adhesion structures within the epidermis. Elongation thus exemplifies the reciprocal tissue interactions of organogenesis. 相似文献
5.
6.
Like other organs, the C. elegans gonad develops from a simple primordium that must undergo axial patterning to generate correct adult morphology. Proximal/distal (PD) polarity in the C. elegans gonad is established early during gonadogenesis by the somatic gonad precursor cells, Z1 and Z4. Z1 and Z4 each divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. PD polarity of the Z1/Z4 lineages requires the activity of a Wnt pathway that activates the TCF/LEF homolog pop-1. How the gonadal pathway controlling pop-1 is regulated by upstream factors has been unclear, as neither Wnt nor Dishevelled (Dsh) proteins have been shown to be required. Here we show that the C. elegansdsh homolog dsh-2 controls gonadal polarity. As in pop-1 mutants, dsh-2 hermaphrodites have Z1 and Z4 lineage defects indicative of defective PD polarity and are missing gonadal arms. Males have an elongated but disorganized gonad, also with lineage defects. DSH-2 protein is expressed in the Z1/Z4 gonadal precursor cells. Asymmetric distribution of nuclear GFP::POP-1 in Z1 and Z4 daughter cells is reversed in dsh-2 mutants, with higher levels in distal than proximal daughters. dsh-2 and the frizzled receptor homolog lin-17 have a strong genetic interaction, suggesting that they act in a common pathway. We suggest that DSH-2 functions as an upstream regulator of POP-1 in the somatic gonad to control asymmetric cell division, thereby establishing proximal-distal polarity of the developing organ. 相似文献
7.
8.
9.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1. 相似文献
10.
We isolated cog-3(ku212) as a C. elegans egg-laying defective mutant that is associated with a connection-of-gonad defective phenotype. cog-3(ku212) mutants appear to have no connection between the vulval and the uterine lumens at the appropriate stage because the uterine lumen develops with a temporal delay relative to the vulva and, thus, is not present when the connection normally forms. The lack of temporal synchronization between the vulva and the uterus is not due to precocious or accelerated vulval development. Instead, global gonadogenesis is mildly delayed relative to development of extra-gonadal tissue. cog-3(ku212) mutants also have a specific uterine fate defect. Normally, four cells of the uterine pi lineage respond via their LET-23 epidermal growth factor-like receptors to a vulval-derived LIN-3 EGF signal and adopt the uterine vulval 1 (uv1) fate. In cog-3(ku212) mutants, these four pi progeny cells are set aside as a pre-uv1 population but undergo necrosis prior to full differentiation. A gain-of-function mutation in LET-23 EGF receptor and ectopic expression of LIN-3 EGF within the proper temporal constraints can rescue the uv1 defect, suggesting that a signaling defect, perhaps due to the temporal delay, is at fault. In support of this model, we demonstrate that lack of vulval-uterine coordination due to precocious vulval development also leads to uv1 cell differentiation defects. 相似文献
11.
egl-13 encodes a Sox domain protein that is required for proper uterine seam cell development in Caenorhabditis elegans. We demonstrate that mutations of the C2H2 zinc fingers encoded by the him-8 (high incidence of males) gene partially suppress the egg-laying and connection-of-gonad morphology defects caused by incompletely penetrant alleles of egl-13. him-8 alleles have previously characterized recessive effects on recombination and segregation of the X chromosome during meiosis due to failure of X chromosome homolog pairing and subsequent synapsis. However, we show that him-8 alleles are semi-dominant suppressors of egl-13, and the semi-dominant effect is due to haplo-insufficiency of the him-8 locus. Thus, we conclude that the wild-type him-8 gene product acts antagonistically to EGL-13. Null alleles of egl-13 cannot be suppressed, suggesting that this antagonistic interaction most likely occurs either upstream of or in parallel with EGL-13. Moreover, we conclude that suppression of egl-13 is due to a meiosis-independent function of him-8 because suppression is observed in mutants that have severely reduced meiotic germ cell populations and suppression does not depend on the function of him-8 in the maternal germ line. We also show that the chromosomal context of egl-13 seems important in the him-8 suppression mechanism. Interactions between these genes can give insight into function of Sox family members, which are important in many aspects of metazoan development, and into functions of him-8 outside of meiosis. 相似文献
12.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways. 相似文献
13.
14.
Bull K Cook A Hopper NA Harder A Holden-Dye L Walker RJ 《International journal for parasitology》2007,37(6):627-636
Emodepside, a cyclooctadepsipeptide, is a broad-spectrum anthelmintic previously shown to paralyse body wall muscle and pharyngeal muscle in the model nematode Caenorhabditis elegans. We demonstrate that wild-type C. elegans L4 are less sensitive than adults to emodepside in two independent assays of locomotor behaviour: body bend generation on agar (adult IC(50) 3.7 nM, L4 IC(50) 13.4 nM) and thrashing behaviour in liquid (thrashing behaviour as a % of controls after 1h in 10 microM emodepside: adults 16%, L4 worms 48%). We also show that continuous exposure of wild-type C. elegans to emodepside throughout the life-cycle from egg onwards, slows worm development, an effect that is emodepside concentration-dependent. The rate of worm-hatching from eggs on agar plates containing emodepside was not significantly different from controls, suggesting that it is development post-hatching rather than hatching itself that is affected by the drug. Emodepside also inhibits wild-type C. elegans egg-laying, with acute exposure to the drug at 500 nM resulting in an almost total inhibition within the first hour. However, the rate of egg production was not inhibited and therefore emodepside-treated worms became bloated with eggs, eventually rupturing. This suggests that the effect of emodepside on reproduction is not due to an inhibition of egg production but rather a paralytic effect on the egg-laying muscles. These results, when coupled with previous research, suggest that emodepside interferes with signalling at the neuromuscular junction on the body-wall muscles (Willson et al., 2003), pharynx (Willson et al., 2004) and egg-laying muscles and thus inhibits three important physiological functions: locomotion, feeding and reproduction. 相似文献
15.
16.
Partridge FA Tearle AW Gravato-Nobre MJ Schafer WR Hodgkin J 《Developmental biology》2008,317(2):549-559
Ventral enclosure in Caenorhabditis elegans involves migration of epidermal cells over a neuroblast substrate and subsequent adhesion at the ventral midline. Organisation of the neuroblast layer by ephrins and their receptors is essential for this migration. We show that bus-8, which encodes a predicted glycosyltransferase, is essential for embryonic enclosure and acts in or with ephrin signalling to mediate neuroblast organisation and to permit epidermal migration. BUS-8 acts non-cell-autonomously in this process, and likely modifies an extracellular regulator of ephrin signalling and cell organisation. Weak and cold-sensitive alleles of bus-8 show that the gene has a separate and distinct post-embryonic role, being essential for epidermal integrity and production of the cuticle surface. This disorganisation of the epidermis and cuticle layers causes increased drug sensitivity, which could aid the growing use of C. elegans in drug screening and chemical genomics. The viable mutants are also resistant to infection by the pathogen Microbacterium nematophilum, due to failure of the bacterium to bind to the host surface. The two separate essential roles of BUS-8 in epidermal morphogenesis add to our growing understanding of the widespread importance of glycobiology in development. 相似文献
17.
18.
Xiao H Hapiak VM Smith KA Lin L Hobson RJ Plenefisch J Komuniecki R 《Developmental biology》2006,298(2):379-391
Serotonin (5-HT) stimulation of egg-laying in Caenorhabditis elegans is abolished in ser-1 (ok345) animals and is rescued by ser-1 expression in vulval muscle. A PDZ binding motif (ETFL) at the SER-1 C-terminus is not essential for rescue, but facilitates SER-1 signaling. SER-1 binds specifically to PDZ domain 10 of the multi-PDZ domain protein, MPZ-1, based on GST pulldown and co-immunoprecipitation. mpz-1 is expressed in about 60 neurons and body wall and vulval muscles. In neurons, GFP-tagged MPZ-1 is punctate and colocalizes with the synaptic marker, synaptobrevin. The expression patterns of ser-1 and mpz-1 overlap in 3 pairs of neurons and vulval muscle. In addition, MPZ-1 also interacts with other GPCRs with acidic amino acids in the -3 position of their PDZ binding motifs. mpz-1 RNAi reduces 5-HT stimulated egg-laying in wild type animals and in ser-1 mutants rescued by muscle expression of SER-1. In contrast, mpz-1 RNAi has no effect on 5-HT stimulated egg-laying in ser-1 mutants rescued by expression of a truncated SER-1 that lacks the C-terminal PDZ binding motif. The overexpression of MPZ-1 PDZ domain 10 also inhibits 5-HT stimulated egg-laying. These studies suggest that the SER-1/MPZ-1 interaction facilitates SER-1 mediated signaling. 相似文献
19.
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network. 相似文献
20.