首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Microelectrode techniques were applied to the rabbit isolated perfused cortical collecting duct to provide an initial quantitation and characterization of the cell membrane and tight junction conductances. Initial studies demonstrated that the fractional resistance (ratio of the resistance of the apical cell membrane to the sum of the resistances of the apical and basolateral membranes) was usually independent of the point along the tubule of microelectrode impalement—implicating little cell-to-cell coupling—supporting the application of quantitative techniques to the cortical collecting duct. It was demonstrated that in the presence of amiloride, either reduction in the luminal pH or the addition of barium to the perfusate selectively reduced the apical membrane potassium conductance. From the changes inG te and fractional resistance upon reducing the luminal pH or addition of barium to the perfusate, the transepithelial, apical membrane, basolateral membrane and tight junction conductances were estimated to be 9.3, 6.7, 8.1 and 6.0 mS cm–2, respectively. Ninety to ninety-five percent of the apical membrane conductance reflected the barium-sensitive potassium conductance in the presence of amiloride with an estimated potassium permeability of 1.1×10–4 cm sec–1. Reduction in the perfusate pH to 4.0 caused a 70% decrease in the apical membrane potassium conductance, implying a blocking site with an acidic group having a pK a near 4.4. It is concluded that both the transcellular and paracellular pathways of the cortical collecting tubule have high ionic conductances, and that the apical membrane conductance primarily reffects a high potassium conductance. Furthermore, both reduction in the perfusate pH and addition of barium to the perfusate selectively block the apical potassium channels, although the site of inhibition likely differs since the two ions display markedly different voltage-dependent blocks of the channel.  相似文献   

2.
Cell membrane water permeability of rabbit cortical collecting duct   总被引:15,自引:0,他引:15  
Summary The water permeability (P osm) of the cell membranes of isolated perfused rabbit cortical collecting ducts was measured by quantitative light microscopy. Water permeability of the basolateral membrane, corrected for surface area, was 66 m·sec–1 for principal cells and 62.3 m·sec–1 for intercalated cells. Apical membraneP osm values corrected for surface area, were 19.2 and 25 m·sec–1 for principal and intercalated cells, respectively, in the absence of antidiuretic hormone (ADH). Principal and intercalated cells both responded to ADH by increasingP osm of their apical membranes to 92.2 and 86.2 ·sec–1 respectively. The ratio of the total basolateral cell membrane osmotic water permeability to that of the apical cell membrane was 271 in the absence of ADH and 71 in the presence of the hormone for both cell types. This asymmetry in water permeability is most likely due to the fact that basolateral membrane surface area is at least 7 to 8 times greater than that of the apical membrane. Both cell types exhibited volume regulatory decrease when exposed to dilute serosal bathing solutions. Upon exposure to a hyperosmotic serosal bath (390 mosm), pricipal cells did not volume regulate while two physiologically distinct groups of intercalated cells were observed. One group of intercalated cells failed to volume regulate; the second group showed almost complete volume regulatory increase behavior.  相似文献   

3.
4.
S O Bohman 《Prostaglandins》1977,14(4):729-744
The renal medulla has a high capacity for prostaglandin production and the interstitial cells, which contain abundant lipid inclusions have been suggested to be the site of synthesis. However, histochemical studies have indicated that the collecting ducts are the main site of production. The object of the present study was to study the distribution of prostaglandin synthetase in the rabbit renal medulla by direct, quantitative determination of the enzyme activity in different cellular fractions. Slices were cut from rabbit renal papilla and immersed in a hypertonic saline solution. 92% of the collecting duct cells were then removed from the slices by suction through a micropipette. The remaining dissected slices thus contained mainly three cell types, cells of Henle's loop, endothelial cells, and interstitial cells. The isolated collecting duct fraction, the corresponding dissected slices, from which the colelcting duct cells were removed, as well as intact slices were assayed for prostaglandin synthetase activity using a quantitative assay with [14C] arachidonate as substrate. Of the prostaglandin in synthetase activity 39% was found in the collecting ducts, 53% in the dissected slices, and 7% in the dissection medium. It is thus concluded that significant prostaglandin synthetase activity is present in collecting duct cells as well as in at least one other cell type of the medulla.  相似文献   

5.
6.
Background information. A major hallmark of apoptosis is cell shrinkage, termed apoptotic volume decrease, due to the cellular outflow of potassium and chloride ions, followed by osmotically obliged water. In many cells, the ionic pathways triggered during the apoptotic volume decrease may be similar to that observed during a regulatory volume decrease response under hypotonic conditions. However, the pathways involved in water loss during apoptosis have been largely ignored. It was recently reported that in some systems this water movement is mediated via specific water channels (aquaporins). Nevertheless, it is important to identify whether this is a ubiquitous aspect of apoptosis as well as to define the mechanisms involved. The aim of the present work was to investigate the role of aquaporin‐2 during apoptosis in renal‐collecting duct cells. We evaluated the putative relationship between aquaporin‐2 expression and the activation of the ionic pathways involved in the regulatory volume response. Results. Apoptosis was induced by incubating cells with a hypertonic solution or with cycloheximide in two cortical collecting duct cell lines: one not expressing aquaporins and the other stably transfected with aquaporin‐2. Typical features of apoptosis were evaluated with different approaches and the water permeability was measured by fluorescence videomicroscopy. Our results show that the rate of apoptosis is significantly increased in aquaporin‐2 cells and it is linked to the rapid activation of volume‐regulatory potassium and chloride channels. Furthermore, the water permeability of cells expressing aquaporin‐2 was strongly reduced during the apoptotic process and it occurs before DNA degradation. Conclusions. These results let us propose that under apoptotic stimulation aquaporin‐2 would act as a sensor leading to a co‐ordinated activation of specific ionic channels for potassium and chloride efflux, resulting in both more rapid cell shrinkage and more rapid achievement of adequate levels of ions necessary to activate the enzymatic apoptotic cascade.  相似文献   

7.
It has been documented that arginine vasopressin (AVP) and prostaglandin E(2) (PGE(2)) regulate water reabsorption in renal tubular cells. The present study was attempted to delineate the downstream signaling of AVP and PGE(2) in a cortical collecting duct cell line (M-1 cell). Using RT-PCR, we detected mRNA for V2 and VACM-1 but not for V1a and AII/AVP receptors of AVP. Furthermore, neither AVP nor V2 receptor agonist and antagonist alter cellular cAMP. These together with unchanged cellular Ca(2+) by AVP suggested that AVP pathway was not operating in M-1 cells. All four classical PGE(2) receptors with EP3 and EP4 as the most prominent were detected in M-1 cells. PGE(2), 11-deoxy-PGE(1) (EP2 and EP4 agonist), and 17-phenyl-trinor-PGE(2) (EP1 agonist) increased cellular concentration of cAMP. There was no effect of PGE(2) or EP1 agonist on cellular Ca(2+). These findings provide evidence of the involvement of PGE(2) cascade in M-1 cells. M-1 cells were capable of synthesizing nitric oxide (NO). Although individual cytokines did not affect NO production, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma elevated NO concentration to 4.5-fold of the control. Addition of PGE(2) and db-cAMP to the cytokine mixture further increased NO production to 7.0- and 9.8-fold, respectively, of that seen in non-treated cells. PGE(2) or db-cAMP alone, however, had no effect on NO production. The results of the study led us to speculate that enhanced production of cAMP via PGE(2) signaling pathway in M-1 cells could either stimulate or attenuate water reabsorption in renal tubule. While an increase in cAMP alone may enhance water reabsorption, a concomitant increase in cAMP and cytokines may inhibit water reabsorption in renal tubule.  相似文献   

8.
9.
10.
Volume regulation in cortical collecting duct cells: role of AQP2   总被引:2,自引:0,他引:2  
BACKGROUND INFORMATION: The renal CCD (cortical collecting duct) plays a role in final volume and concentration of urine by a process that is regulated by the antidiuretic hormone, [arginine]vasopressin. This hormone induces an increase in water permeability due to the translocation of AQP2 (aquaporin 2) from the intracellular vesicles to the apical membrane of principal cells. During the transition from antidiuresis to diuresis, CCD cells are exposed to changes in environmental osmolality, and cell-volume regulation may be especially important for the maintenance of intracellular homoeostasis. Despite its importance, cell-volume regulation in CCD cells has not been widely investigated. Moreover, no studies have been carried out till date to evaluate the putative role of AQPs during this process in renal cells. RESULTS: In the present study, we have studied the regulatory cell-volume responses to hypo-osmotic or hyperosmotic challenges in two CCD cell lines: one not expressing AQPs and the other stably transfected with AQP2. We have used a fluorescent probe technique in which the acquisition of single-cell kinetic data can be simultaneously recorded with the intracellular pH. Experiments with hyperosmotic mannitol media demonstrated that, independent of AQP2 expression, CCD cells shrink but fail to show regulatory volume increase, at least under the studied conditions. In contrast, under hypo-osmotic shocks, regulatory volume decrease occurs and the activation of these mechanisms is more rapid in AQP2 transfected cells. This regulatory response takes place in parallel with intracellular acidification, which is faster in cells expressing AQP2. The acidification and the initial regulatory volume decrease response were inhibited by glibenclamide and BaCl2 only in AQP2 cells. CONCLUSIONS: These results suggest that increases in the osmotic water permeability due to the expression of AQP2 are critical for a rapid activation of regulatory volume decrease mechanisms, which would be linked to cystic fibrosis transmembrane conductance regulator and to barium-sensitive potassium channels.  相似文献   

11.
The renal medulla has a high capacity for prostaglandin production and the interstitial cells, which contain abundant lipid inclusions, have been suggested to be the site of synthesis. However, histochemical studies have indicated that the collecting ducts are the main site of production. The object of the present study was to study the distribution of prostaglandin synthetase in the rabbit renal medulla by direct, quantitative determination of the enzyme activity in different cellular fractions.Slices were cut from rabbit renal papilla and immersed in a hypertonic saline solution. 92% of the collecting duct cells were then removed from the slices by suction through a micropipette. The remaining dissected slices thus contained mainly three cell types, cells of Henle's loop, endothelial cells, and interstitial cells. The isolated collecting duct fraction, the corresponding dissected slices, from whcih the collecting duct cells were removed, as well as intact slices were assayed for prostaglandin synthetase activity using a quantitative assay with [14C] arachidonate as substrate.Of the prostaglandin synthetase activity 39% was found in teh collecting ducts, 53% in the dissected slices, and 7% in the dissection medium. It is thus concluded that significant prostaglandin synthetase activity is present in collecting duct cells as well as in at least one other cell type of the medulla.  相似文献   

12.
Regulation of transport by principal cells of the distal nephron contributes to maintenance of Na(+) and K(+) homeostasis. To assess which of these ions is given a higher priority by these cells, we investigated the upregulation of epithelial Na(+) channels (ENaC) in the rat cortical collecting duct (CCD) during Na depletion with and without simultaneous K depletion. ENaC activity, assessed as whole cell amiloride-sensitive current in split-open tubules, was 260 ± 40 pA/cell in K-repleted but virtually undetectable (3 ± 1 pA/cell) in K-depleted animals. This difference was confirmed biochemically by the reduced amounts of the cleaved forms of both the α-ENaC and γ-ENaC subunits measured in immunoblots. In contrast, in K-depleted rats, simultaneously reducing Na intake did not affect the activity of ROMK channels, assessed as tertiapin-Q-sensitive whole cell currents, in the CCDs. The lack of Na current in K-depleted animals was the result of reduced levels of aldosterone in plasma, rather than a reduced sensitivity to the hormone. However, rats on a low-Na, low-K diet for 1 wk did not excrete more Na than those on a low-Na, control-K diet for the same period of time. Immunoblot analysis indicated increased levels of the thiazide-sensitive NaCl cotransporter and the apical Na-H exchanger NHE3. This suggests that with reduced K intake, Na balance is maintained despite reduced aldosterone and Na(+) channel activity by upregulation of Na(+) transport in upstream segments. Under these conditions, Na(+) transport by the aldosterone-sensitive distal nephron is reduced, despite the low-Na intake to minimize K(+) secretion and urinary K losses.  相似文献   

13.
14.
Morphology of rabbit collecting duct.   总被引:5,自引:0,他引:5  
Recently the assumed structural and functional homogeneity of the collecting duct (CD) has been questioned. The objective of this study was to determine if heterogeneity occurs in luminal surface membrane structure or in cytoplasmic configuration of cells in the collecting duct or both. Straight segments of cortical and medullary CD were examined in perfusion-fixed rabbit kidneys with scanning electron microscopy (SEM), light (LM) and transmission electron microscopy (TEM). Principal cells were the most abundant cells in all CD regions; intercalated cells comprised 37% of the cell population on the cortex, 18% in the outer medulla, and less than 1% in the inner medulla. SEM revealed two surface patterns among the ciliated principal cells: 1, located in the cortex and outer medulla, with few surface microvilli, and 2, located in the inner medulla, with abundant microvilli. Intercalated cells exhibited four distinctive luminal surface configurations: I, numerous short microvilli; II, both short and elongate microvilli; III, microplicae alone; and IV, both microvilli and microplicae. Intercalated cells with patterns I and II were predominant in the cortex, while cells with patterns III and IV were most common at the corticomedullary junction. TEM confirmed that marked variation existed in cytoplasmic structures of both principal and intercalated cells. These findings may either indicate the presence of several specific types of principal and intercalated cells or reflect different functional states of the principal and intercalated cells. Regardless of their significance, their presence must be considered in studies seeking to establish precise structural-functional relationships in this region of the rabbit renal tubule.  相似文献   

15.
Cyclooxygenase-2 (COX-2) expression is increased by hypertonicity. Therefore we hypothesized that hypertonicity increased PGE(2) can modulate the sodium transporters (Na(+)/K(+)-ATPase: NKA, epithelial sodium channel: ENaC, and sodium hydrogen exchanger: NHE) in M1 cortical collecting duct (CCD) cells. We demonstrated by immunoblotting a 2-fold increase in NKA expression and activity following hypertonic treatment. α-ENaC was also increased, however sgk1, an ENaC activator, decreased in response to hypertonicity. Other CCD sodium transporters (β-ENaC, NHE) were unchanged. Hypertonicity also increased PGE(2) but EP(4) receptor mRNA was unaltered. PGE(2) increased intracellular Na(+) and cAMP production in M1 cells, but PGE(2)-stimulated cAMP response was attenuated by hypertonicity. Overall, PGE(2) had no effect on sodium transporter levels. Since neither COX inhibition nor EP(4) siRNA altered the induction of NKA, we propose that sodium transporter regulation by hypertonicity is independent of PGE(2). Altogether, these data indicate that despite a concomitant increase in PGE(2) production and sodium transporter expression in hypertonicity, both pathways are acting independently of each other.  相似文献   

16.
17.
18.
Extracellular ATP in the cortical collecting duct can inhibit epithelial sodium channels (ENaC) but also stimulate calcium-activated chloride channels (CACC). The relationship between ATP-mediated regulation of ENaC and CACC activity in cortical collecting duct cells has not been clearly defined. We used the mpkCCD(c14) cortical collecting duct cell line to determine effects of ATP on sodium (Na(+)) and chloride (Cl(-)) transport with an Ussing chamber system. ATP, at a concentration of 10(-6) M or less, did not inhibit ENaC-mediated short-circuit current (I(sc)) but instead stimulated a transient increase in I(sc). The macroscopic current-voltage relationship for ATP-inducible current demonstrated that the direction of this ATP response changes from positive to negative when transepithelial voltage (V(te)) is clamped to less than -10 mV. We hypothesized that this negative V(te) might be found under conditions of aldosterone stimulation. We next stimulated mpkCCD(c14) cells with aldosterone (10(-6) M) and then clamped the V(te) to -50 mV, the V(te) of aldosterone-stimulated cells under open-circuit conditions. ATP (10(-6) M) induced a transient increase in negative clamp current, which could be inhibited by flufenamic acid (CACC inhibitor) and BAPTA-AM (calcium chelator), suggesting that ATP stimulates Cl(-) absorption through CACC. Together, our findings suggest that the status of ENaC activity, by controlling V(te), may dictate the direction of ATP-stimulated Cl(-) transport. This interplay between aldosterone and purinergic signaling pathways may be relevant for regulating NaCl transport in cortical collecting duct cells under different states of extracellular fluid volume.  相似文献   

19.
20.
M-1 cells, derived from a microdissected cortical collecting duct of a transgenic mouse, grown to confluence on a permeable support, develop a lumen-negative amiloride-sensitive transepithelial potential, reabsorb sodium, and secrete potassium. Electron micrographs show morphological features typical of principal cells in vivo. Using the patch clamp technique distinct differences are detected in whole-cell membrane current and voltage (Vm) between single M-1 cells 24 h after seeding vs cells grown to confluence. (a) Under control conditions (pipette: KCl- Ringer; bath: NaCl-Ringer) Vm averages -42.7 +/- 3.4 mV in single cells vs -16.8 +/- 4.1 mV in confluent cells. Whole-cell conductance (Gcell) in confluent cells is 2.6 times higher than in single cells. Cell capacitance values are not significantly different in single vs confluent M-1 cells, arguing against electrical coupling of confluent M- 1 cells. (b) In confluent cells, 10(-4)-10(-5) M amiloride hyperpolarizes Vm to -39.7 +/- 3.0 mV and the amiloride-sensitive fractional conductance of 0.31 shows a sodium to potassium selectivity ratio of approximately 15. In contrast, single cells express no significant amiloride-sensitive conductance. (c) In single M-1 cells, Gcell is dominated by an inwardly rectifying K-conductance, as exposure to high bath K causes a large depolarization and doubling of Gcell. The barium-sensitive fraction of Gcell in symmetrical KCl-Ringer is 0.49 and voltage dependent. (d) In contrast, neither high K nor barium in the apical bath affect confluent M-1 cells, showing that confluent cells lack a significant apical K conductance. (e) Application of 500 microM glibenclamide reduces whole-cell currents in both single and confluent M-1 cells with a glibenclamide-sensitive fractional conductance of 0.71 and 0.83 in single and confluent cells, respectively. Glibenclamide inhibition occurs slower in confluent M-1 cells than in single cells, suggesting a basolateral action of this lipophilic drug on ATP-sensitive basolateral K channels in M-1 cells. (f) A component of the whole-cell conductance in M-1 cells appears as a deactivating outward current during large depolarizing voltage pulses and is abolished by extracellular chloride removal. The deactivating chloride current averages 103.6 +/- 16.1 pA/cell, comprises 24% of the outward current, and decays with a time constant of 179 +/- 13 ms. The outward to inward conductance ratio obtained from deactivating currents and tail currents is 2.4, indicating an outwardly rectifying chloride conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号