首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytoskeletons of erythrocytes from the toad Bufo marinus are composed of a surface-associated cytoskeleton that encapsulates the annular bundle of microtubules known as the marginal band (MB) and the centrally located nucleus. As seen by phase-contrast microscopy, the microtubules (MTs) of the MB remain tightly bundled after cell lysis without the need for added stabilizing factors. The integrity of this structure suggested that in addition to MTs other components were present in the MB and were responsible for its stability. Thin (less than 18 nm) platinum-carbon (Pt-C) replicas of freeze-dried cytoskeletons prepared by using a modified Balzers 300 system provided a novel method of sample preparation for a high-resolution study of the ultrastructure of the MB. Electron micrographs of replicas revealed that, the MTs of the MB displayed numerous filamentous projections which, when viewed in stereo, appear as side-arm connections between adjacent MTs. Immunofluorescence data show that monospecific antibodies to tubulin and to MT-associated protein 2 (MAP2) from brain each detect cross-reactive material in the MB. The combination of immunogold cytochemistry with Pt-C replication provided the increased resolution required to identify the individual structures recognized by antibodies to tubulin and MAP2. As expected, antitubulin labeled the MTs of the MB. However, anti-MAP2 antibodies were localized specifically to the cross-bridging filaments between adjacent MTs. Thus, a MAP2-like protein was identified in situ as the crossbridging filament that bundles MTs to form a stable MB.  相似文献   

2.
The microtubules of mature nucleated erythrocytes are organized into a marginal band that is confined to a single plane at the periphery and that contains essentially the same number of microtubule profiles in each individual cell. Developing erythrocytes can be isolated in homogeneous and synchronously developing populations from chicken embryos. For these reasons, these cells offer a particularly accessible system for study of the pathway leading to a specific microtubule structure in a normal, terminally differentiated animal cell. Along this developmental course, striking changes occur in the properties of the microtubules. Between the postmitotic cell and the formation of the band, a novel arrangement is found: bundles of laterally associated microtubules in each cell, coursing through the cytoplasm but not confined to the periphery. The microtubule organizing centers evident at early stages disappear by the time the band forms. The microtubules in early cells are readily depolymerized by drugs, but that drug sensitivity is lost in the mature cells. The microtubule arrangement of mature cells is faithfully recapitulated after reversible depolymerization, while that of the immature cells is not. Finally, as the band forms, the microtubules and microfilaments increasingly become coaligned. In sum, the microtubules of immature cells have many properties in common with those of cultured cells, but during maturation those properties change. The results suggest that lateral interactions become increasingly important in stabilizing and organizing the microtubules. The properties of marginal band microtubules, and comparable properties of axonal microtubules, may reflect differences between the requirements for cytoskeletal structures of cycling cells and terminally differentiated cells.  相似文献   

3.
Summary The effects of diazepam (DZP) on mitosis and the microtubule (MT) cytoskeleton were examined using live and fixed PtK1 and newt (Taricha granulosa) epithelial lung cells. DZP treatment caused rapid shortening of spindle MTs at prometaphase and metaphase, inducing movement of the poles together while chromosome oscillations continued. DZP treatment slowed the rate of anaphase A but did not detectably affect anaphase B, cell cleavage or interphase cells. Our results suggest that DZP inhibits mitosis by affecting prometaphase and metaphase MTs. Its action is not equivalent to that of common anti-MT drugs, since only a small subpopulation of MTs are significantly susceptible. Likewise, its effects are not equivalent to those generated by metabolic inhibitors. The related benzodiazepines, medazepam and oxazepam, induce effects equivalent to those of DZP.  相似文献   

4.
Observations of the marginal band system of nucleated erythrocytes   总被引:11,自引:11,他引:0  
The marginal band (MB) of nucleated erythrocytes (thos of nonmammalian vertebrates) is a continuous peripheral bundle of microtubules normally obscured by hemoglobin. Treatment of these elliptical cells with modified microtubule polymerization media containing Triton X-100 yields a semilysed system in which MB, nucleus, and trans-MB material (TBM) are visible under phase contrast. The TBM apparently interconnects structural components, passing around opposite sides of the nucleus and suspending it in native position. In uranyl acetatestained whole whole mounts (goldfish) examined by transmission electron microscopy, the TBM appears as a network. MBs of semilysed cells are relatively planar initially, but twist subsequently into a range of "figure-8" shapes with one of the two possible mirror-image configurations predominant. Nuclei and MBs can be released using proteolytic enzymes, to which the TBM seems most rapidly vulnerable. MBs thus freed are birefringent, generally untwisted, and much more circular than they are in situ. As a working hypothesis, it is prosposed that the flattened, elliptical shape of nucleated erythrocytes is a result of TBM tension applied asymmetrically across an otherwise more circular MB, and that the firure-8 configuration occurs when there is extreme TBM shrinkage or contraction.  相似文献   

5.
The marginal band is a bundle of microtubules residing at the periphery of nucleated erythrocytes of nonmammalian vertebrates and some invertebrates. Marginal bands from erythrocytes of the newt (Notopthalmus viridescens) were isolated from the cells as intact structures by treatment with detergent and either mild protease or high salt. Isolated bands were subjected to mechanical testing by stretching the band between a glass microhook and a calibrated glass fiber. The deflection of the fiber provided a measure of the force on the band. The flexural rigidity of the band was determined from measurements of the band deformation as a function of applied force. Bands isolated with either of two proteases (pepsin or elastase) or with high salt exhibited elastic behavior with a flexural rigidity of approximately 9.0 X 10(-12) dyn.cm2. Treatment of bands with chymopapain caused an increase in band rigidity and inelastic behavior. Estimates of the contribution of the band to cellular rigidity are made based on the measurements of the structural properties of the isolated band. The band provides the cell with a large resistance to indentations at the rim and to large extensions, while maintaining a high degree of flexibility in small extensions or flexure.  相似文献   

6.
A characterization is reported of the major cytoskeletal protein, called IEF (isoelectric focusing)-51K, of marginal band microtubule coils from human blood platelets (Kenney, D. M. and Linck, R. W. (1985) J. Cell Sci. 78, 1-22). IEF-51K is a unique biochemical species which is distinguishable from platelet and mammalian neuronal alpha-tubulin and beta-tubulin by 1) its faster mobility on discontinuous sodium dodecyl sulfate electrophoresis corresponding to an apparent Mr 51,000; 2) its more alkaline relative isoelectric point at pH 5.7 compared with that of alpha- and beta-tubulin at pH 5.3 and 5.5, respectively; 3) lack of coincidence in peptide maps prepared with chymotrypsin or Staphylococcus aureus V8 protease; and 4) lack of immunochemical cross-reactivity of polyclonal anti-IEF-51K with alpha- and beta-tubulin and of monoclonal anti-alpha-tubulin and anti-beta-tubulin with IEF-51K. In contrast to its chemical uniqueness, IEF-51K is tubulin-like in some of its properties. IEF-51K is localized in the marginal band of intact platelets by immunofluorescence; it undergoes cycles of microtubule disassembly/reassembly both in vitro and in vivo. Furthermore, IEF-51K was not extracted from isolated Taxol-stabilized marginal band microtubules by elevated NaCl concentrations (to 0.45 M), conditions that do not disrupt the polymeric structure of alpha- and beta-tubulin. These results indicate that IEF-51K together with alpha-tubulin and beta-tubulin are the major structural polypeptides of platelet marginal band microtubules. The unusual subunit composition of the platelet marginal band microtubule may be related to specialization(s) of microtubule structure and function in the marginal band coil of platelets.  相似文献   

7.
Continuous circumferential bundles of microtubules, or marginal bands (MBs), are best known as a prominent structural feature of all nonmammalian vertebrate erythrocytes and mammalian blood platelets. Since their discovery in the late 19th century, MBs have been thought to play a cellular morphogenetic role, but no cytological clues to the mechanism of MB biogenesis have been reported. In previous work we have established the presence of MBs in serveral invertebrate blood cell types, including amebocytes and coelomocytes of certain Arthropod species and erythrocytes of a Sipunculan. We report here the occurrence of MBs in erythrocytes of the ark Anadara transversa (Mollusca) and four closely related species. The MBs of these arks have a striking structural feature; each is physically associated with a pair of centrioles. The centrioles are identified as such on the basis of morphological criteria: size, cylindrical shape, right-angle orientation, pairing, and 9-triplet ultrastructure. This intimate association between centrioles and MBs suggests that centrioles may be MB-organizing centers and invites comparative investigation of their possible role in vertebrate erythrocyte and platelet morphogenesis.  相似文献   

8.
Dynamics of microtubules from erythrocyte marginal bands.   总被引:1,自引:1,他引:1       下载免费PDF全文
Microtubules can adjust their length by the mechanism of dynamic instability, that is by switching between phases of growth and shrinkage. Thus far this phenomenon has been studied with microtubules that contain several components, that is, a mixture of tubulin isoforms, with or without a mixture of microtubule-associated proteins (MAPs), which can act as regulators of dynamic instability. Here we concentrate on the influence of the tubulin component. We have studied MAP-free microtubules from the marginal band of avian erythrocytes and compared them with mammalian brain microtubules. The erythrocyte system was selected because it represents a naturally stable aggregate of microtubules; second, the tubulin is largely homogeneous, in contrast to brain tubulin. Qualitatively, erythrocyte microtubules show similar features as brain microtubules, but they were found to be much less dynamic. The critical concentration of elongation, and the rates of association and dissociation of tubulin are all lower than with brain microtubules. Catastrophes are rare, rescues frequent, and shrinkage slow. This means that dynamic instability can be controlled by the tubulin isotype, independently of MAPs. Moreover, the extent of dynamic behavior is highly dependent on buffer conditions. In particular, dynamic instability is strongly enhanced in phosphate buffer, both for erythrocyte marginal band and brain microtubules. The lower stability in phosphate buffer argues against the hypothesis that a cap of tubulin.GDP.Pi subunits stabilizes microtubules. The difference in dynamics between tubulin isotypes and between the two ends of microtubules is preserved in the different buffer systems.  相似文献   

9.
《The Journal of cell biology》1984,99(6):2108-2113
The microtubules of nucleated erythrocytes form an extraordinary structure: they are organized into a marginal band at the periphery of the cell. This unusual organelle, recurring in detail in each cell, provides an excellent opportunity to study the determinants of microtubule form. We have been able to reform the marginal band, using detergent-extracted erythrocytes that have been depleted of microtubules in vivo and phosphocellulose-purified tubulin from calf brain. We find that detergent-extracted cytoskeletons incubated under these conditions again have microtubules, and that the pattern of these microtubules recapitulates several features of the intact marginal band. In particular, most of the microtubules after regrowth are located in a band at the periphery of the cell, and curve to form an ellipse. These results support the hypothesis that the specification of microtubule location and shape in these cells is governed by determinants that reside at the periphery of the cell.  相似文献   

10.
The plasma membrane of nucleated erythrocytes contains a microtubular marginal band which appears to be associated with the plasma membrane skeleton. In this report, we identify two families of cytoskeletal proteins which may be involved in such an association. These proteins, of molecular mass 78 kDa and 48 kDa on SDS-PAGE, are shown to bind tubulin based on a 125I-labeled tubulin binding assay. Solubilization of isolated chicken erythrocyte plasma membranes in Triton X-100 shows that these proteins centrifuge with the pellet, indicating that they are bound to the membrane skeleton. Finally, immunofluorescence studies using antisera raised against the 78 kDa and 48 kDa proteins show that they colocalize with the marginal band in intact cells. Colocalization of cytoskeletal tubulin-binding proteins with the marginal band favors a hypothesis suggesting that the 78 kDa and 48 kDa proteins are involved in the association of the two molecular superstructures.  相似文献   

11.
L M Schopfer  J M Salhany 《Biochemistry》1992,31(50):12610-12617
Fluorescence spectroscopy was used to follow the kinetics of covalent binding of DIDS (4,4'-diisothiocyanato-2,2'-stilbenedisulfonate) to isolated band 3 in C12E8. We have discovered a dilution-induced loss in the ability of band 3 monomer to form a covalent adduct with DIDS. The loss in DIDS reactivity with dilution followed a 50:50 biphasic time course despite the use of a homogeneous preparation of band 3 oligomers. The loss in reactivity generally correlated with the association of band 3 dimers and tetramers to higher oligomeric structures. The final aggregated product was capable of binding BADS (4-benzamido-4'-amino-2,2'-stilbenedisulfonate) reversibly, but with an affinity nearly 30-fold lower than that of the starting material. Removal of the cytoplasmic domain of band 3 slowed the conformational interconversion of the integral domain by about 5-fold and inhibited the aggregation process. The conformational interconversion was slowed in the presence of 150 mM chloride but not in 90 mM sulfate. Covalent binding of DIDS inhibited the aggregation of band 3. Addition of 250 microM lipid inhibited both the loss of DIDS reactivity and the protein aggregation process. While several types of lipid offer protection, phosphatidic acid accelerated the decay process by eliminating the biphasicity. We conclude that the conformation of the integral domain of band 3 can be modulated allosterically by the addition of ligands, including various lipids. The results offer direct evidence for cooperative interactions between band 3 subunits during loss of activity, and they show that the cytoplasmic domain participates in the control of this transition.  相似文献   

12.
13.
Summary The fine structure of the cytolemma of olfactory receptor cells in the newt was studied by the freeze-fracture replica method. Two kinds of receptor cells were recognized, namely ciliated cells (ciliary type) and non-ciliated cells (microvilli type). The cytolemma of olfactory knobs as well as their processes from both types of receptor cells showed an abundance of large membrane particles 80110Å in diameter. The large square aggregation of membrane particles, 0.1×0.1 m to 0.2×0.3 m in size, consisting of 50100 cuboidal subunits, were found in the cytolemma of the dendrite. A structural model of aggregation is presented. The soma of the receptor cell revealed large pitted membrane particles about 140Å in diameter. These particles are possibly the morphologic counterpart to ionophores which have been proposed by electrophysiological studies.  相似文献   

14.
15.
16.
17.
One of the possible mechanisms that has been proposed to underlie the deleterious effects of zinc deficiency on brain development is an impairment in the normal formation of the cytoskeletal network. In the current study, in vivo microtubule polymerization was characterized in brain supernatant fluids, from 20-d-old pups whose dams were fed diets containing control (50 micrograms zinc/g) or marginal levels of zinc (10 micrograms zinc/g) throughout pregnancy and lactation. Pup brain and body weights were similar between the groups; however, plasma zinc concentrations were lower (27%) in pups fed the marginal zinc diet than in controls. Tubulin concentrations in 100,000 g brain supernates were similar between the groups; however, tubulin polymerization in the brain supernates was significantly lower in pups fed the marginal zinc diet compared to controls. Primarily, the early events of polymerization were affected; the lag period of the reaction was doubled, and the initial velocity was slower (26%) in supernates from pups fed the marginal zinc diet than in controls. These findings support the idea that some of the negative effects of marginal zinc deficiency on brain development and function may be mediated by an alteration in microtubule formation.  相似文献   

18.
19.
Monoclonal antibodies (P3-9H, P3-1F, P3-2H, P3-4A, and P3-4C) to human erythrocyte band 3 were produced using human erythrocyte membranes as the immunogen. All epitopes defined by these antibodies were found on the amino-terminal cytoplasmic domain of erythrocyte band 3. The antibodies crossreacted variously with erythrocyte band 3 of primates (chimpanzee, orangutan, Rhesus monkey, Japanese monkey, spider monkey, and capuchin monkey) in enzyme-linked immunosorbent assay. P3-9H did not crossreact with erythrocyte band 3 of any primate examined; P3-1F crossreacted only with that of chimpanzee; P3-2H crossreacted with erythrocyte band 3 of chimpanzee, spider monkey, and capuchin monkey; and P3-4A and P3-4C crossreacted with erythrocyte band 3 of all primates examined. These results suggest that evolutional changes in primates are accumulated in the amino-terminal cytoplasmic domain of band 3 and that species-specific epitopes exist on this domain.  相似文献   

20.
Summary LW13K2 cells, a clone of a spontaneously in vitro transformed derivative of embryonic Lewis rat fibroblastic cells, were studied by phase contrast cine-light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ruffles found at the advancing edge of cells grown on glass substrates in vitro form and recede in a period of less than one min if they do not make an attachment of the substrate. If they fail to make an attachment they may form pinocytotic channels near the leading edge as described by Price (1972) and/or collapse, generally backwards, towards the cell body. The spines which appear to reinforce the membranous ruffles are the last structures to disappear, and accumulate in an irregular array behind the ruffling edge; this area is behind that in which pinocytosis occurs. In comparison with the sparse numbers of ribosomes found in the trailing edge, they are present in notable concentrations near the leading, ruffling edge of the cell. No membrane vesicles have been found in or near the ruffling edges at the ruffle-spine concentration zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号