首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of antibiotic-resistant genes in genetically engineered crops together with the target gene has generated a number of environmental and consumer concerns. In order to alleviate public concerns over the safety of food derived from transgenic crops, marker gene elimination is desirable. Marker-free transgenic tomato plants were obtained by using a salicylic-acid-regulated Cre–loxP-mediated site-specific DNA recombination system in which the selectable marker neomycin phosphotransferase nptII and cre genes were flanked by two directly oriented loxP sites. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding nptII and cre genes, sandwiched by two loxP sites from the tomato genome. Regenerant plants with the Cre–loxP system were obtained by selection on kanamycin media and polymerase chain reaction (PCR) screening. Transgenic plants were screened for excision by PCR using nptII, cre, and PR-1a promoter primers following treatment with salicylic acid. The footprint of the excision was determined by sequencing the T-DNA borders after a perfect recombination event. The excision efficiency was 38.7%. A new plant transformation vector, pBLNSC (Genbank accession number EU327497), was developed, containing six cloning sites and the self-excision system. This provided an effective approach to eliminate the selectable marker gene from transgenic tomato, thus expediting public acceptance of genetically modified tomato.  相似文献   

2.
Zhang Y  Li H  Ouyang B  Lu Y  Ye Z 《Biotechnology letters》2006,28(16):1247-1253
Marker-free transgenic tomato plants harboring a synthetic Bacillus thuringiensis endotoxin gene, cryIAc, were obtained by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination system, in which the selectable marker neomycin phosphotransferase gene flanked by two directly oriented loxP sites was located between the cauliflower mosaic virus 35S promoter and a promoterless cryIAc. Upon induction by 2 μM β-estradiol, sequences encoding the selectable marker and cre sandwiched by two loxP sites were excised from the tomato genome, leading to activation of the downstream endotoxin gene cryIAc with high expression levels as shown by Northern blot and ELISA assay (250–790 ng g−1 fresh wt) in T1 generation. For transgenic line with single transgenic loci, 15% of T1 progenies were revealed marker-free. This autoexcision strategy provides an effective approach to eliminate a selectable marker gene from transgenic tomato, thus expediting the public acceptance of genetically modified crop.  相似文献   

3.
4.
The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.  相似文献   

5.
We have developed a self-excision Cre-vector to remove marker genes from Brassica napus. In this vector cre recombinase gene and bar expression cassette were inserted between two lox sites in direct orientation. These lox-flanked sequences were placed between the seed-specific napin promoter and the gene of interest (vstI). Tissue-specific cre activation resulted in simultaneous excision of the recombinase and marker genes. The vector was introduced into B. napus by Agrobacterium-mediated transformation. F1 progeny of seven lines with single and multiple transgene insertions was subjected to segregation and molecular analysis. Marker-free plants could be detected and confirmed by PCR and Southern blot in all transgenic lines tested. The recombination efficiency expressed as a ratio of plants with complete gene excision to the total number of investigated plants varied from 13 to 81% dependent on the transgene copy number. Potential application of this system would be the establishment of marker-free transgenic plants in generatively propagated species.  相似文献   

6.
Wang Y  Chen B  Hu Y  Li J  Lin Z 《Transgenic research》2005,14(5):605-614
In a plant transformation process, it is necessary to use marker genes that allow the selection of regenerated transgenic plants. However, selectable marker genes are generally superfluous once an intact transgenic plant has been established. Furthermore, they may cause regulatory difficulties for approving transgenic crop release and commercialization. We constructed a binary expression vector with the Cre/lox system with a view to eliminating a marker gene from transgenic plants conveniently. In the vector, recombinase gene cre under the control of heat shock promoter and selectable marker gene nptII under the control of CaMV35S promoter were placed between two lox P sites in direct orientation, while the gene of interest was inserted outside of the lox P sites. By using this vector, both cre and nptII genes were eliminated from most of the regenerated plants of primary transformed tobacco through heat shock treatment, while the gene of interest was retained and stably inherited. This autoexcision strategy, mediated by the Cre/lox system and subjected to heat shock treatment to eliminate a selectable marker gene, is easy to adopt and provides a promising approach to generate marker-free transgenic plants.  相似文献   

7.
Resistance to antibiotics mediated by selectable marker genes remains a powerful selection tool for transgenic event production. However, regulatory agencies and consumer concerns favor these to be eliminated from food crops. Several excision systems exist but none have been optimized or shown to be functional for clonally propagated crops. The excision of the nptII gene conferring resistance to kanamycin has been achieved here using a gene construct based on a heat-inducible cre gene producing a recombinase that eliminates cre and nptII genes flanked by two loxP sites. First-generation regenerants with the Cre-loxP system were obtained by selection on kanamycin media. Following a heat treatment, second generation regenerants were screened for excision by PCR using nptII, cre, and T-DNA borders primers. Excision efficiency appeared to be at 4.7% depending on the heat treatment. The footprint of the excision was shown by sequencing between T-DNA borders to correspond to a perfect recombination event. Selectable marker-free sprouts were also obtained from tubers of transgenic events when submitted to similar heat treatment at 4% frequency. Spontaneous excision was not observed out of 196 regenerants from untreated transgenic explants. Biosafety concerns are minimized because the expression of cre gene driven by the hsp70 promoter of Drosophila melanogaster was remarkably low even under heat activation and no functional loxP site were found in published Solanum sequence database. A new plant transformation vector pCIP54/55 was developed including a multiple cloning site and the self-excision system which should be a useful tool not only for marker genes in potato but for any gene or sequence removal in any plant.  相似文献   

8.
Despite the advances in transgenesis, transformation technologies still rely on the introduction of a selectable marker gene to identify cells and tissues that have integrated the gene of interest in their genome. The continuous presence of the marker genes in the transgenics is often controversial as it can potentially have multiple undesirable impacts. The present study employed the self-excising Cre-loxP system to generate marker-free Arabidopsis thaliana expressing the agronomically important glyoxalase I (glyI) gene from Brassica juncea to confer salt stress tolerance. A binary vector was constructed wherein the salt-inducible rd29A promoter was used to drive the expression of the glyI gene and the transformants of A. thaliana were recovered using kanamycin resistance as the selectable marker. The neomycin phosphotransferase II (nptII) gene was flanked by the loxP sites followed by the introduction of a heat-inducible Cre-recombinase in between the loxP sites. The kanamycin-resistant transgenic lines of A. thaliana using this vector showed an ability to withstand stress imposed by 150 mM NaCl. The exposure of the T2 transgenic lines to a mild heat shock (37°C) resulted in the recovery of salt-tolerant, kanamycin-sensitive T3 progeny. Molecular analyses of the T3 transgenic lines following the heat shock treatment confirmed the excision of the nptII gene and the completion of their life cycle in the presence of 150 mM NaCl-induced stress.  相似文献   

9.
M. Dutt  Z.T. Li  S.A. Dhekney  D.J. Gray   《Plant science》2008,175(3):423-430
A co-transformation system was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. ‘Thompson Seedless’ somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bi-directional dual promoter complex. Our technique included a short positive selection phase on medium containing 100 mg l−1 kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg l−1 5-fluorocytosine. We regenerated 25 stable EGFP expressing transgenic lines. PCR analysis confirmed 18 lines contained only the egfp gene, whereas the remaining contained both egfp and codA/nptII genes. Presumably, the 18 monogenic lines arose through cross protection by being in close proximity to cells that expressed nptII and thus detoxified kanamycin in the immediate vicinity. This is the first report for grapevine using a combination of positive and negative selection to produce transgenic plants that do not contain marker genes.  相似文献   

10.
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.  相似文献   

11.
After the initial transformation and tissue culture process is complete, selectable marker genes, which are used in virtually all transformation approaches, are not required for the expression of the gene of interest in the transgenic plants. There are several advantages to removing the selectable marker gene after it is no longer needed, such as enabling the reuse of selectable markers and simplifying transgene arrays. We have tested the Cre/lox system from bacteriophage P1 for its ability to precisely excise stably integrated marker genes from chromosomes in transgenic maize plants. Two strategies, crossing and autoexcision, have been tested and demonstrated. In the crossing strategy, plants expressing the Cre recombinase are crossed with plants bearing a transgene construct in which the selectable marker gene is flanked by directly repeated lox sites. Unlike previous reports in which incomplete somatic and germline excision were common, in our experiments complete somatic and germline marker gene excision occurred in the F1 plants from most crosses with multiple independent Cre and lox lines. In the autoexcision strategy, the cre gene, under the control of a heat shock-inducible promoter, is excised along with the nptII marker gene. Our results show that a transient heat shock treatment of primary transgenic callus is sufficient for inducing cre and excising the cre and nptII genes. Genetic segregation and molecular analysis confirmed that marker gene removal is precise, complete and stable. The autoexcision strategy provides a way of removing the selectable marker gene from callus or other tissues such as embryos and kernels.Communicated by D. Hoisington  相似文献   

12.
This work is focused on the generation of selectable marker-free transgenic tobacco plants using the self excision Cre/loxP system that is controlled by a strong seed specific Arabidopsis cruciferin C (CRUC) promoter. It involves Agrobacterium-mediated transformation using a binary vector containing the gus reporter gene and one pair of the loxP sites flanking the cre recombinase and selectable nptII marker genes (floxed DNA). Surprisingly, an ectopic activation of CRUC resulting in partial excision of floxed DNA was observed during regeneration of transformed cells already in calli. The regenerated T0 plants were chimeric, but no ongoing ectopic expression was observed in these one-year-long invitro maintained plants. The process of the nptII removal was expected in the seeds; however, none of the analysed T0 transgenic lines generated whole progeny sensitive to kanamycin. Detailed analyses of progeny of selected T0-30 line showed that 10.2% GUS positive plants had completely removed nptII gene while the remaining 86.4% were still chimeras. Repeated activation of the cre gene in T2 seeds resulted in increased rate of marker-free plants, whereas four out of ten analysed chimeric T1 plants generated completely marker-free progenies. This work points out the feasibility as well as limits of the CRUC promoter in the Cre/loxP strategy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Jia H  Pang Y  Chen X  Fang R 《Transgenic research》2006,15(3):375-384
Selection markers are often indispensable during the process of plant transformation, but dispensable once transgenic plants have been established. The Cre/lox site-specific recombination system has been employed to eliminate selectable marker genes from transgenic plants. Here we describe the use of a movement function-improved Tobacco Mosaic Virus (TMV) vector, m30B, to express Cre recombinase for elimination of the selectable marker gene nptII from transgenic tobacco plants. The transgenic tobacco plants were produced by Agrobacterium-mediated transformation with a specially designed binary vector pGNG which contained in its T-DNA region a sequence complex of 35S promoter-lox-the gfp coding sequence-rbcS terminator-Nos promoter-nptII-Nos terminator-lox-the gus coding region-Nos terminator. The expression of the recombinant viral vector m30B:Cre in plant cells was achieved by placing the viral vector under the control of the 35S promoter and through agroinoculation. After co-cultivating the pGNG-leaf discs with agro35S-m30B:Cre followed by shoot regeneration without any selection, plants devoid of the lox-flanked sequences including nptII were obtained with an efficiency of about 34% as revealed by histochemical GUS assay of the regenerants. Three of 11 GUS expressing regenerants, derived from two independent transgenic lines containing single copy of the pGNG T-DNA, proved to be free of the lox-flanked sequences by Southern blot analysis. Excision of the lox-flanked sequences in the three plants could be attributed to transient expression of Cre from the viral vector at the early stage of co-cultivation, since the cre sequence could not be detected in the viral RNA molecules accumulated in the plants, nor in their genomic DNA. The parental marker-free genotype was inherited in their selfed progeny, and all of the progeny were virus-free, apparently because TMV is not seed-transmissible. Therefore, expression of Cre from a TMV-based vector could be used to eliminate selectable marker genes from transgenic tobacco plants without sexual crossing and segregation, and this strategy could be extended to other TMV-infected plant species and applicable to other compatible virus–host plant systems.  相似文献   

14.
The salt-tolerance gene rstB under the control of the cauliflower mosaic virus 35S promoter was used as a selectable marker gene in the Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum cv. Xanthi). The selective agent for plant regeneration was tolerance to 170 mM sodium chloride. The highest selection efficiency was 83.3%. No obvious differences in selection efficiencies were observed when those obtained using the standard selectable marker gene hpt and a selection regime of 10 mg l−1 hygromycin. Transgenic events were confirmed by PCR, Southern blot, RT-PCR and green fluorescent protein studies. The rstB transgenic plants showed improved salt tolerance and a normal phenotype. Based on these results, we suggest that the rstB gene may be used as a promising selectable marker and an alternative to the antibiotic- or herbicide-resistance genes in plant transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In order to meet the future requirement of using non-antibiotic resistance genes for the production of transgenic plants, we have adapted the selectable marker system PMI/mannose to be used in Agrobacterium-mediated transformation of flax (Linum usitatissimum L.) cv. Barbara. The Escherichia coli pmi gene encodes a phosphomannose isomerase (E.C. 5.1.3.8) that converts mannose-6-phosphate, an inhibitor of glycolysis, into fructose-6-phosphate (glycolysis intermediate). Its expression in transformed cells allows them to grow on mannose-selective medium. The Agrobacterium tumefaciens strain GV3101 (pGV2260) harbouring the binary vector pNOV2819 that carries the pmi gene under the control of the Cestrum yellow leaf curling virus constitutive promoter was used for transformation experiments. Transgenic flax plants able to root on mannose-containing medium were obtained from hypocotyl-derived calli that had been selected on a combination of 20 g L−1 sucrose and 10 g L−1 mannose. Their transgenic state was confirmed by PCR and Southern blotting. Transgene expression was detected by RT-PCR in leaves, stems and roots of in vitro grown primary transformants. The mean transformation efficiency of 3.6%, that reached 6.4% in one experiment was comparable to that obtained when using the nptII selectable marker on the same cultivar. The ability of T1 seeds to germinate on mannose-containing medium confirmed the Mendelian inheritance of the pmi gene in the progeny of primary transformants. These results indicate that the PMI/mannose selection system can be successfully used for the recovery of flax transgenic plants under safe conditions for human health and the environment.  相似文献   

16.
Colonial bentgrass (Agrostis tenuis Sibth. Fl. Oxen.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable and repeatable approach in transforming the grass using Agrobacterium (strain LBA4404), in which -glucuronidase (gus) gene was used as a reporter and hygromycin phosphotransferase (hpt) gene as a selectable marker. This vector was effective in transforming 7-week-old calluses derived from mature seeds cultured on MS medium supplemented with 2,4-D. A two-step solid medium selection with increasing hygromycin concentration (from 50 to 70 mg l–1) was used to obtain resistant calluses. Hundreds of transgenic plants have been produced from several independent transformed calluses. The presence of functional -glucuronidase (GUS) was detected in hygromycin-resistant calluses, young leaves and roots of transgenic plants. The transgenic plants collected from greenhouse showed strong resistance to 50 mg l–1 hygromycin solution. Four putative transgenic plants and one control plant were randomly chosen and analyzed by Southern blot analysis. Bands corresponding to the hpt gene were clearly shown in transgenic plants.  相似文献   

17.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

18.
The presence of resistant selectable marker genes and other added DNAs such as the vector backbone sequence in transgenic plant might be an unpredictable hazard to the ecosystem as well as to human health, which have affected the safe assessment of transgenic plants seriously. Using minimal gene expression cassette (containing the promoter, coding region, and terminator) without vector backbone sequence for particle bombardment is the new trend of plant genetic transformation. In the present paper, we co-transformed the selectable marker bar gene cassette and non-selected cecropinB gene cassette into rice (Oryza sativa L.) by particle bombardment, then eliminated the selectable marker bar gene in R1 generation applying the hereditary segregation strategy and attained two safe transgenic plants only harboring cecropinB gene cassettes without any superfluous DNA. This is the fist report indicating that the combination of minimal gene cassettes transformation with the co-transformation and segregation strategy can generate selectable marker-free transgenic plants, which will promote the advancement in plant genetic engineering greatly.  相似文献   

19.
TheAspergillus niger gene encoding phytase(phyA) was expressed in canola (Brassicanapus). Phytase expression is controlled by the seed-specificcruciferin (CruA) promoter. Secretion of the enzyme was aimed for byincorporating the cruciferin signal peptide in the expression construct.Transgenic canola lines were generated by Agrobacteriummediated transformation using nptII as the selectable marker. Ninety-fiveindependent transgenic events were generated. Phytase expression in the T1seedsranged from 0 to 600 U/g seed. Single-copy lines were selected(based on segregation for kanamycin resistance, phytase expression and Southernanalyses) from originally multi-copy transgenic lines. Phytase was expressed inthese sub-lines up to 103 U/g. Expression levels were monitoredthrough an additional 3–4 generations (in the greenhouse and in thefield)and the accumulation of phytase appeared to be fairly stable. In the expressionrange studied, phytase expression was gene-dosage dependent.  相似文献   

20.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号