首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pilot Raman microspectroscopy study of formalin-fixed, paraffin-embedded, and deparaffinized sections from the same ovarian normal and malignant tissues was carried out. This approach was considered in order to evaluate the suitability of these ex vivo tissue handling procedures in discrimination as well as biochemical characterization. The spectra of formalin-fixed normal and malignant tissues exhibited no contamination due to formalin, which is indicated by the absence of strong formalin peaks; spectral features also show significant differences for normal and malignant tissues. The differences between spectral profiles of deparaffinized normal and malignant tissues are subtle and spectra show few residual sharp peaks of paraffin. Complete dominance of paraffin swamping signals from tissues was observed in the spectra of paraffin-embedded tissues. Principal components analysis (PCA), which was employed for discrimination of tissue type, provided good discrimination for formalin-fixed and paraffin-embedded tissue spectra. PCA of deparaffinized tissues resulted in a poor classification with significant overlap among the clusters. Thus, this study indicates that formalin fixation is the most suitable among the three procedures employed in the study. Significant differences between spectral profiles of normal and malignant formalin-fixed tissues can not only be exploited for discrimination but can also provide information on biochemical characteristics of the tissues. Deparaffinized tissues provide poor discrimination and information on tissue biochemistry is lost. Paraffin-embedded tissues may provide good discrimination, but predominance of paraffin in the spectra could jeopardize biochemical characterization. Prospectively, as a result of the better availability of paraffin-embedded tissues and problems associated with frozen sectioning of formalin-fixed tissues, the results of this study using paraffin-embedded tissues are very encouraging.  相似文献   

2.
Optical spectroscopy methods are fast emerging as potential alternatives for early diagnosis of cancer. A Raman spectroscopy method for discrimination of normal and malignant oral tissues has been developed by us earlier. It is necessary to evaluate and establish the validity of the approach before it can be routinely used. In the present study, our Raman spectroscopy investigations are extended further to evaluate the efficacy of the technique to discriminate between normal, inflammatory, premalignant, and malignant conditions in oral tissue. Spectral profiles of normal, malignant, premalignant, and inflammatory conditions show pronounced differences between one another. Spectra of normal tissues can be attributed mainly to lipids whereas pathological tissue spectra are dominated by proteins. Principal components analysis (PCA) of the spectral data sets belonging to the four different categories showed that scores of factors differentiated between normal and all pathological conditions but gave only poor discrimination among the three pathological states. PCA combined with multiparameter limit tests allow match/mismatch criteria to be applied to test samples when pathologically certified calibration sets are available in each class. It is shown that by this method all the four tissue types could be discriminated and diagnosed correctly. The biochemical differences between normal and pathological conditions of oral tissue are also discussed from spectral differences of the different classes of spectra.  相似文献   

3.
We present the first detailed study using multispectral multiphoton fluorescence lifetime imaging to differentiate basal cell carcinoma cells (BCCs) from normal keratinocytes. Images were acquired from 19 freshly excised BCCs and 27 samples of normal skin (in & ex vivo). Features from fluorescence lifetime images were used to discriminate BCCs with a sensitivity/specificity of 79%/93% respectively. A mosaic of BCC fluorescence lifetime images covering >1 mm2 is also presented, demonstrating the potential for tumour margin delineation. Using 10,462 manually segmented cells from the image data, we quantify the cellular morphology and spectroscopic differences between BCCs and normal skin for the first time. Statistically significant increases were found in the fluorescence lifetimes of cells from BCCs in all spectral channels, ranging from 19.9% (425–515 nm spectral emission) to 39.8% (620–655 nm emission). A discriminant analysis based diagnostic algorithm allowed the fraction of cells classified as malignant to be calculated for each patient. This yielded a receiver operator characteristic area under the curve for the detection of BCC of 0.83. We have used both morphological and spectroscopic parameters to discriminate BCC from normal skin, and provide a comprehensive base for how this technique could be used for BCC assessment in clinical practice.  相似文献   

4.
A new technique in microscopy is now available which permits to image specific molecular bonds of chemical species present in cells and tissues. The so called Coherent Anti-Stokes Raman Scattering (CARS) approach aims at maximizing the light matter interaction between two laser pulses and an intrinsic molecular vibrational level. This is possible through a non linear process which gives rise to a coherent radiation that is greatly enhanced when the frequency difference between the two laser pulses equals the Raman frequency of the aimed molecular bond. Similar to confocal microscopy, the technique permits to build an image of a molecular density within the sample but doesn't require any labelling or staining since the contrast uses the intrinsic vibrational levels present in the sample. Images of lipids in membranes and tissues have been reported together with their spectral analysis. In the case of very congested media, it is also possible to use a non invasive labelling such as deuterium which shifts the molecular vibration of the C-H bond down to the C-D bond range which falls in a silent region of the cell and tissue vibrational spectra. Such an approach has been used to study lipid phase in artificial membranes. Although the technique is still under development, CARS has now reach a maturity which will permit to bring the technology at a commercial stage in the near future. The last remaining bottleneck is the laser system which needs to be simplified but solutions are now under evaluation. When combined with others more conventional techniques, CARS should give its full potential in imaging unstained samples and like two photons techniques has the potential of performing deep tissues imaging.  相似文献   

5.
The deep tissue penetration and submicron spatial resolution of multiphoton microscopy and the high detection efficiency and nanometer spectral resolution of a spectrograph were utilized to record spectral images of the intrinsic emission of mouse skin tissues. Autofluorescence from both cellular and extracellular structures, second-harmonic signal from collagen, and a narrowband emission related to Raman scattering of collagen were detected. Visualization of the spectral images by wavelength-to-RGB color image conversion allowed us to identify and discriminate tissue structures such as epidermal keratinocytes, lipid-rich corneocytes, intercellular structures, hair follicles, collagen, elastin, and dermal cells. Our results also showed morphological and spectral differences between excised tissue section, thick excised tissue, and in vivo tissue samples of mouse skin. Results on collagen excitation at different wavelengths suggested that the origin of the narrowband emission was collagen Raman peaks. Moreover, the oscillating spectral dependency of the collagen second-harmonic intensity was experimentally studied. Overall, spectral imaging provided a wealth of information not easily obtainable with present conventional multiphoton imaging systems.  相似文献   

6.
Confocal Raman microscopy is a useful tool to observe composition and constitution of label-free samples at high spatial resolution. However, accurate characterization of microstructure of tissue and its application in diagnostic imaging are challenging due to weak Raman scattering signal and complex chemical composition of tissue. We have developed a method to improve imaging speed, diffraction efficiency, and spectral resolution of confocal Raman microscopy. In addition to the novel imaging technique, the machine learning method enables confocal Raman microscopy to visualize accurate histology of tissue sections. Here, we have demonstrated the performance of the proposed method by measuring histological classification of atherosclerotic arteries and compared the histological confocal Raman images with the conventional staining method. Our new confocal Raman microscopy enables us to comprehend the structure and biochemical composition of tissue and diagnose the buildup of atherosclerotic plaques in the arterial wall without labeling.  相似文献   

7.
High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC.  相似文献   

8.
In vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections of the skin without physically dissecting the tissue. A combination of both techniques in a single instrument is described. This combination allows the skin morphology to be visualized and (subsurface) structures in the skin to be targeted for Raman measurements. Novel results are presented that show detailed in vivo concentration profiles of water and of natural moisturizing factor for the stratum corneum that are directly related to the skin architecture by in vivo cross-sectional images of the skin. Targeting of skin structures is demonstrated by recording in vivo Raman spectra of sweat ducts and sebaceous glands in situ. In vivo measurements on dermal capillaries yielded high-quality Raman spectra of blood in a completely noninvasive manner. From the results of this exploratory study we conclude that the technique presented has great potential for fundamental skin research, pharmacology (percutaneous transport), clinical dermatology, and cosmetic research, as well as for noninvasive analysis of blood analytes, including glucose.  相似文献   

9.
We investigated different kinds of human ex‐vivo skin samples by combined two‐photon intrinsic fluorescence (TPE), second‐harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two‐photon emission detection (MTPE). Morphological and spectroscopic differences were found between healthy and pathological skin samples, including tumors. In particular, we examined tissue samples from normal and pathological scar tissue (keloid), and skin tumors, including basal cell carcinoma (BCC), and malignant melanoma (MM). By using combined TPE‐SHG microscopy we investigated morphological features of different skin regions. Further comparative analysis of healthy skin and neoplastic samples was performed using FLIM, and MTPE. Finally, we demonstrated the use of methyl‐aminolevulinate as a contrast agent to increase the contrast in BCC border detection. The results obtained represent further support for in‐vivo noninvasive imaging of diseased skin. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera’s collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.  相似文献   

11.
Detection of peripheral nerve tissues during surgery is required to avoid neural disturbance following surgery as an aspect of realizing better functional outcome. We provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues, including myelinated and unmyelinated nerves, against adjacent tissues that employ spontaneous Raman microspectroscopy. To investigate the Raman spectral features of peripheral nerves in detail, we used unfixed sectioned samples. Raman spectra of myelinated nerve, unmyelinated nerve, fibrous connective tissue, skeletal muscle, tunica media of blood vessel, and adipose tissue of Wistar rats were analyzed, and Raman images of the tissue distribution were constructed using the map of the ordinary least squares regression (OLSR) estimates. We found that nerve tissues exhibited a specific Raman spectrum arising from axon or myelin sheath, and that the nerve tissues can be selectively detected against the other tissues. Moreover, myelinated and unmyelinated nerves can be distinguished by the intensity differences of 2,855 cm?1, and 2,945 cm?1, which are mainly derived from lipid and protein contents of nerve fibers. We applied this method to unfixed section samples of human periprostatic tissues excised from prostatic cancer patients. Myelinated nerves, unmyelinated nerves, fibrous connective tissues, and adipose tissues of the periprostatic tissues were separately detected by OLSR analysis. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.  相似文献   

12.
Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data. These results demonstrate that confocal Raman spectroscopy holds promise as a tool for practical, minimally invasive, label-free measurement of microbicide drug concentrations in fluids, gels and tissues.  相似文献   

13.
Breast cancers are the leading cancers among females. Diagnosis by fine needle aspiration cytology (FNAC) is the gold standard. The widely practiced screening method, mammography, suffers from high false positive results and repeated exposure to harmful ionizing radiation. As with all other cancers survival rates are shown to heavily depend on stage of the cancers (Stage 0, 95%; Stage IV, 75%). Hence development of more reliable screening and diagnosis methodology is of considerable interest in breast cancer management. Raman spectra of normal, benign, and malignant breast tissue show significant differences. Spectral differences between normal and diseased breast tissues are more pronounced than between the two pathological conditions, malignant and benign tissues. Based on spectral profiles, the presence of lipids (1078, 1267, 1301, 1440, 1654, 1746 cm(-1)) is indicated in normal tissue and proteins (stronger amide I, red shifted DeltaCH2, broad and strong amide III, 1002, 1033, 1530, 1556 cm(-1)) are found in benign and malignant tissues. The major differences between benign and malignant tissue spectra are malignant tissues seem to have an excess of lipids (1082, 1301, 1440 cm(-1)) and presence of excess proteins (amide I, amide III, red shifted DeltaCH2, 1033, 1002 cm(-1)) is indicated in benign spectra. The multivariate statistical tool, principal components analysis (PCA) is employed for developing discrimination methods. A score of factor 1 provided a reasonable classification of all three tissue types. The analysis is further fine-tuned by employing Mahalanobis distance and spectral residuals as discriminating parameters. This approach is tested both retrospectively and prospectively. The limit test, which provides the most unambiguous discrimination, is also considered and this approach clearly discriminated all three tissue types. These results further support the efficacy of Raman spectroscopic methods in discriminating normal and diseased breast tissues.  相似文献   

14.
BACKGROUND: Specific signal detection has been a fundamental issue in fluorescence microscopy. In the context of tissue samples, this problem has been even more pronounced, with respect to spectral overlap and autofluorescence. METHODS: Recent improvements in confocal laser scanning microscopy combine sophisticated hardware to obtain fluorescence emission spectra on a single-pixel basis and a mathematical procedure called "linear unmixing" of fluorescence signals. By improving both the specificity of fluorescence acquisition and the number of simultaneously detectable fluorochromes, this technique of spectral imaging (SI) allows complex interrelations in cells and tissues to be addressed. RESULTS: In a comparative approach, SI microscopy on a quantitative basis was compared to conventional bandpass (BP) filter detection, demonstrating substantial superiority of SI with respect to detection accuracy and dye combination. An eight-color immunofluorescence protocol for tissue sections was successfully established. Moreover, advanced use of SI in fluorescence resonance energy transfer (FRET) applications using enhanced green fluorescence protein (EGFP) and enhanced yellow fluorescence protein (EYFP) in a confocal set up could be demonstrated. CONCLUSIONS: This novel technology will help to perform complex multiparameter investigations at the cellular level by increasing the detection specificity and permitting simultaneous use of more fluorochromes than with classical techniques based on emission filters. Moreover, SI significantly extends the possibilities for specialized microscopy applications, such as the visualization of macromolecular interactions or conformational changes, by detecting FRET.  相似文献   

15.
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub‐organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live‐cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid‐based phenotypes.  相似文献   

16.
An interdisciplinary approach employing functionalized nanoparticles and ultrasensitive spectroscopic techniques is reported here to track the molecular changes in early stage of malignancy. Melanoma tissue tracking at molecular level using both labelled and unlabelled silver and gold nanoparticles has been achieved using surface enhanced Raman scattering (SERS) technique. We used skin tissue from ex vivo mice with induced melanoma. Raman and SERS molecular characterization of melanoma tissue is proposed here for the first time. Optical nanosensors based on Ag and Au nanoparticles with chemisorbed cresyl violet molecular species as labels revealed sensitive capability to tissues tagging and local molecular characterization. Sensitive information originating from surrounding native biological molecules is provided by the tissue SERS spectra obtained either with visible or NIR laser line. Labelled nanoparticles introduced systematic differences in tissue response compared with unlabelled ones, suggesting that the label functional groups tag specific tissue components revealed by proteins or nucleic acids bands. Vibrational data collected from tissue are presented in conjunction with the immunohistochemical analysis. The results obtained here open perspectives in applied plasmonic nanoparticles and SERS for the early cancer diagnostic based on the appropriate spectral databank.  相似文献   

17.
Terahertz Pulsed Imaging of Skin Cancer in the Time and Frequency Domain   总被引:2,自引:0,他引:2  
Terahertz Pulsed Imaging(TPI) is a new medical imaging modality forthe detection of epithelial cancers. Overthe last two years this technique has beenapplied to the study of in vitrobasal cell carcinoma (BCC). Usingtime-domain analysis the contrast betweendiseased and normal tissue has been shownto be statistically significant, andregions of increased terahertz (THz)absorption correlated well with thelocation of the tumour sites in histology.Understanding the source of this contrastthrough frequency-domain analysis mayfacilitate the diagnosis of skin cancer andrelated skin conditions using TPI. Wepresent the first frequency-domain analysisof basal cell carcinoma in vitro,with the raw power spectrum giving aninsight into the surface features of theskin. Further data manipulation is requiredto determine whether spectral informationcan be extrapolated at depth. These resultshighlight the complexity of working inreflection geometry.  相似文献   

18.
OBJECTIVE: To visualize and localize specific DNA sequences by fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM) and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Human papillomavirus (HPV) DNA was identified in cervical tissue sections with biotinylated DNA probes recognizing the whole genome of HPV DNA types 18 and 16, and DNA-DNA hybrids were revealed by streptavidin-alkaline phosphatase and Fast Red (FR). Cell nuclei were counterstained with TOTO-iodide. Image sequences were obtained using successive dynamic or spectral sequences of images on different optical slices from CLSM. The location of fluorescent signals inside tissue preparations was determined by FAMIS and/or selection of filters at emission. Image sequences were summarized into a reduced number of images, called "factor images," and curves, called "factors." Factors estimate spectral patterns and depth emission profiles. Factor images correspond to spatial distributions of the different factors. RESULTS: We distinguished between FR and nucleus staining in HPV DNA hybridization signals by taking into account differences in their spectral patterns and improved visualization by taking into account differences in their focus (depth emission profiles). CONCLUSION: FAMIS, together with CLSM, made possible the detection and characterization of HPV DNA sequences in cells of cervical tissue sections.  相似文献   

19.
Two-photon confocal microscopy is a new technology useful in nondestructive analysis of tissue. The pattern generated from laser-excited autofluorescence and second harmonic signals can be analyzed to construct a three-dimensional, microanatomical, structural image. The healing of full-thickness guinea pig skin wounds was studied over a period of 28 days using two-photon confocal microscopy. Three-dimensional data were rendered from two-dimensional images and compared with conventional, en face, histologic sections. Two-photon confocal microscopy images show resolution of muscle, fascia fibers, collagen fibers, inflammatory cells, blood vessels, and hair. Although these images do not currently have the resolution of standard histology, the ability to noninvasively acquire three-dimensional images of skin promises to be an important tool in wound-healing studies.  相似文献   

20.
Raman spectroscopy shows potential in differentiating tumors from normal tissue. We used Raman spectroscopy with near-infrared light excitation to study normal breast tissue and tumors from 11 mice injected with a cancer cell line. Spectra were collected from 17 tumors, 18 samples of adjacent breast tissue and lymph nodes, and 17 tissue samples from the contralateral breast and its adjacent lymph nodes. Discriminant function analysis was used for classification with principal component analysis scores as input data. Tissues were examined by light microscopy following formalin fixation and hematoxylin and eosin staining. Discriminant function analysis and histology agreed on the diagnosis of all contralateral normal, tumor, and mastitis samples, except one tumor which was found to be more similar to normal tissue. Normal tissue adjacent to each tumor was examined as a separate data group called tumor bed. Scattered morphologically suspicious atypical cells not definite for tumor were present in the tumor bed samples. Classification of tumor bed tissue showed that some tumor bed tissues are diagnostically different from normal, tumor, and mastitis tissue. This may reflect malignant molecular alterations prior to morphologic changes, as expected in preneoplastic processes. Raman spectroscopy not only distinguishes tumor from normal breast tissue, but also detects early neoplastic changes prior to definite morphologic alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号