首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of Cx45 channels to CO2, transjunctional voltage (V j) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage clamp. Cx45 channels are very sensitive to V j and close with V j preferentially by the slow gate, likely to be the same as the chemical gate. With a CO2-induced drop in junctional conductance (G j), both the speed of V j-dependent inactivation of junctional current (I j) and V j sensitivity increased. With 40-mV V j-pulses, the of single exponential I j decay reversibly decreased by 40% during CO2 application, and Gj steady state/Gj peak decreased multiphasically, indicating that both kinetics and V j sensitivity of chemical/slow V j gating are altered by changes in [H+]i and/or [Ca2+]i. CaM expression was inhibited with oligonucleotides antisense to CaM mRNA. With 15 min CO2, relative junctional conductance (G jt/G jt0) dropped to 0% in controls, but only by 17% in CaM-antisense oocytes. Similarly, V j sensitivity was significantly lessened in CaM-antisense oocytes. The data indicate that both the speed and sensitivity of V j-dependent inactivation of the junctional current of Cx45 channels are affected by CO2 application, and that CaM plays a key role in channel gating.  相似文献   

2.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

3.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

4.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

5.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were locked open by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.  相似文献   

6.
Summary The voltage- and time-dependent K+ current,I K + out , elicited by depolarization of corn protoplasts, was inhibited by the addition of calcium channel antagonists (nitrendipine, nifedipine, verapamil, methoxyverapamil, bepridil, but not La3+) to the extracellular medium. These results suggested that the influx of external Ca2+ was necessary for K+ current activation. The IC50, concentration of inhibitor that caused 50% reduction of the current, for nitrendipine was 1 m at a test potential of +60 mV following a 20-min incubation period.In order to test whether intracellular Ca2+ actuated the K+ current, we altered either the Ca2+ buffering capacity or the free Ca2+ concentration of the intracellular medium (pipette filling solution). By these means,I K + out could be varied over a 10-fold range. Increasing the free Ca2+ concentration from 40 to 400nm also shifted the activation of the K+ current toward more negative potentials. Maintaining cytoplasmic Ca2+ at 500nm with 40nm EGTA resulted in a more rapid activation of the K+ current. Thus the normal rate of activation of this current may reflect changes in cytoplasmic Ca2+ on depolarization. Increasing intracellular Ca2+ to 500nm or 1 m also led to inactivation of the K+ current within a few minutes. It is concluded thatI K + out is regulated by cytosolic Ca2+, which is in turn controlled by Ca2+ influx through dihydropyridine-, and phenylalkylamine-sensitive channels.  相似文献   

7.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

8.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

9.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

10.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

11.
As in other salivary glands, the secretory cells of the sheep parotid have a resting K+ conductance that is dominated by BK channels, which are activated by acetylcholine (ACh) and are blocked by tetraethylammonium (TEA). Nevertheless, perfusion studies indicate that TEA does not inhibit ACh-evoked fluid secretion or K+ efflux from intact sheep parotid glands. In the present study, we have used whole-cell patch clamp techniques to show that ACh activates K+ and Cl conductances in sheep parotid secretory cells by increasing intracellular free Ca2+, and we have compared the blocker sensitivity of the ACh-evoked whole-cell K+ current to the previously reported blocker sensitivity of the BK channels seen in these cells.The ACh-induced whole-cell K+ current was not blocked by TEA (10 mmol/l) or verapamil (100 mol/l), both of which block the resting K+ conductance and inhibit BK channels in these cells. Quinine (1 mmol/l) and quinidine (1 mmol/l), although only weak blockers of the resting K+ conductance, inhibited the ACh-evoked current at 0 mV (K+ current), by 68% and 78%, respectively. 4-Aminopyridine (10 mmol/l) partially inhibited the ACh-induced K+ current and caused it to fluctuate. It also caused the resting membrane currents to fluctuate, possibly by altering cytosolic free Ca2+. Ba2+ (100 mol/l), a blocker of the inwardly rectifying K+ conductance in sheep parotid cells, had no effect on the ACh-induced K+ current.We conclude that the ACh-induced K+ conductance in sheep parotid cells is pharmacologically distinct from both the outwardly rectifying (BK) K+ conductance and the inwardly rectifying K+ conductance seen in unstimulated cells. Given that in vitro perfusion and K+ efflux studies on other salivary glands in which BK channels dominate the resting conductance (e.g., the rat mandibular, rat parotid and mouse mandibular glands) have revealed an insensitivity to TEA, suggesting that BK channels do not carry the ACh-evoked K+ current, we propose that BK channels do not contribute substantially to the K+ current evoked by ACh in the secretory cells of most salivary glands.This project was supported by the Australian Research Council. We thank Dr. N. Sangster, Dr. J. Rothwell and Mr. R. Murphy for giving us access to their sheep.  相似文献   

12.
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration. Inward currents were sensitive to the K+ channel blocker TEA+ at a high concentration (20 mm). Barium, another classical K+ channel blocker, inhibited K+ currents with a K i of about 1.3 mm. In contrast to guard cells, the cytosolic Ca2+ level proved to be ineffective in regulating the K+ conductance at hyperpolarization. External Ca2+ blocked currents weakly in a voltage-dependent manner. From instantaneous current-voltage curves, we identified a binding site in the channel pore with an electrical distance of about 0.2 to 0.5. Lanthanum ions reduced the inward current in a voltage-dependent manner and simultaneously displaced the voltage at which half of the channels are in the open state to more positive values. This finding was interpreted as resulting from a sum of two molecular effects, an interaction with the mouth of the channel that causes a reduction of current, and a binding to the voltage sensor, leading to a shielding of surface charges and, subsequently, a modulation of channel gating.A comparison between the K+ inward rectifier in xylem parenchyma cells, guard cells and KAT1 from Arabidopsis leads to the conclusion that these rectifiers form subtypes within one class of ion channels. The ineffectiveness of Ca2+ to control K+ influx in xylem parenchyma cells is interpreted in physiological terms.  相似文献   

13.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

14.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

15.
Presynaptic modulation by eicosanoids in cortical synaptosomes   总被引:1,自引:0,他引:1  
In continuing experiments to determine the ionic basis of inhibitory presynaptic modulation, rat cortical synaptosomes were employed and receptor-activated K+ efflux was determined with a K+ sensitive electrode. When synaptosomes were sub-optimally depolarized by veratridine, the addition of agents that activated purinergic, 2, muscarinic and opioid receptors all promoted K+ efflux. With 2-chloroadenosine as a model inhibitory presynaptic modulator, the increased K+ efflux evoked by this agent was blocked by the cyclooxygenase inhibitor indomethacin suggesting that arachidonic acid or its metabolites was an intermediary in opening the channel. When arachidonic acid and PGE2 were tested, both promoted K+ efflux that was inhibited by dendrotoxin and mast cell degranulating peptide, two agents that are known to inhibit a delayed rectifier K+ current. Our results suggest that via eicosanoid second messengers, inhibitory presynaptic modulators open a sub-class of K channels that hyperpolarize nerve terminals, therefore less Ca2+ would enter per nerve impulse and thus the evoked release of neurotransmitters would be decreased.Abbreviations DTX dendrotoxin - MCDP mast cell degranulating peptide - NHGA norhydroguairetic acid - PGE2 prostaglandin E2  相似文献   

16.
Summary Micromolar concentrations of silver ion activate large Ca2+ fluxes across the plasma membrane of intact rod outer segments isolated from bovine retinas (intact ROS). The rate of Ag+-induced Ca2+ efflux from intact ROS depended on the Ag+ concentration in a sigmoidal manner suggesting a cooperative mechanism with a Hill coefficient between 2 and 3. At a concentration of 50 m Ag+ the rate of Ca2+ efflux was 7×106 Ca2+/outer segment/sec; this represents a change in total intracellular Ca2+ by 0.7mm/outer segment/sec. Addition of the nonselective ionophore gramicidin in the absence of external alkali cations greatly reduced the Ag+-induced Ca2+ efflux from intact ROS, apparently by enabling internal alkali cations to leak out. Adding back alkali cations to the external medium restored Ag+-induced Ca2+ efflux when gramicidin was present. In the presence of gramicidin, Ag+-induced Ca2+ efflux from intact ROS was blocked by 50 m tetracaine orl-cis diltiazem, whereas without gramicidin both blockers were ineffective. Bothl-cis diltiazem and tetracaine are blockers of one kinetic component of cGMP-induced Ca2+ flux across ROS disk membranes. The ion selectivity of the Ag+-induced pathway proved to be broad with little discrimination between the alkali cations Li+, Na+, K+, and Cs+ or between Ca2+ and Mg2+. The properties of the Ag+-induced pathway(s) suggest that it may reflect the cGMP-dependent conductance opened in the absence of cGMP by silver ions.  相似文献   

17.
The double whole-cell patch-clamp configuration was applied to analyze gap junctional conductance (G j ) of isolated pairs of cochlear supporting Hensen cells of guinea pig under control conditions and in the presence of hydrogen peroxide (H2O2). Under control conditions, the dependence of G j on transjunctional voltage (V j ) appeared to vary between different cell pairs with a maximum value of about 40 nS at V j close to 0 mV. The voltage dependence and the maximum amplitude of G j stayed constant for at least 2 hr. Addition of H2O2 to the bath at concentrations above 0.08 mm caused a significant decrease of G j , but the membrane potential of about −30 mV was not affected. In parallel, intracellular free calcium ([Ca2+]i) was followed using fura-2. At 0.8 mm H2O2, a sustained increase of [Ca2+]i was observed, while 0.08 mm H2O2 evoked an oscillating-like behavior of [Ca2+]i. We propose that the H2O2-evoked inhibition of gap junctional coupling of Hensen cells is closely related to pathophysiological conditions such as noise- induced hearing loss, aminoglycoside-related ototoxicity and presbycusis, which are known to be associated with production of free radicals. Received: 10 July 2000/Revised: 4 January 2001  相似文献   

18.
Summary Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2+-gated K+ current. The characteristics of the Ca2+-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 m of the intracellular Ca2+, but it was independent of the membrane potential.Charybdotoxin reduced the activity of the Ca2+-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2+-activated K+ channels.  相似文献   

19.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

20.
The Ca2+-dependent K+ efflux from rat submandibular gland was studied using a K+-sensitive electrode. A K+ efflux was induced by either adrenalin or by using the divalent cation ionophore A23187 plus added Ca2+ to bypass the receptor mechanism. Trifluoperazine, which was used to investigate the role of calmodulin, was found to block the adrenalin-induced K+ efflux but not the A23187/Ca2+-induced K+ efflux. The adrenalin-induced K+ efflux was abolished by quinidine and the A23187/Ca2+-induced K+ efflux was significantly reduced by quinidine. In other experiments, the presence of indomethacin did not inhibit the adrenalin-induced K+ efflux, and exogenously added arachidonic acid did not induce a K+ efflux. It is concluded that neither prostaglandin synthesis, nor a cytosolic Ca2+-calmodulin complex is involved in the agonist-induced K+ efflux from rat submandibular gland. A similarity between the Ca2+-dependent K+ efflux mechanism of erythrocyte ghosts and submandibular tissue is indicated by their common response to quinidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号