首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vallente RU  Cheng EY  Hassold TJ 《Chromosoma》2006,115(3):241-249
Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633–638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363–365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405–408; Pathak and Elder (1980) Hum Genet 54:171–175; Solari (1980) Chromosoma 81:315–337; Speed (1984) Hum Genet 66:176–180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215–226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833–848; Vidal et al. (1982) Hum Genet 60:301–304; Bojko (1983) Carlsberg Res Commun 48:285–305; Bojko (1985) Carlsberg Res Commun 50:43–72; Templado et al. (1984) Hum Genet 67:162–165; Navarro et al. (1986) Hum Reprod 1:523–527; Garcia et al. (1989) Hum Genet 2:147–53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.The synaptonemal complex–50 years  相似文献   

2.
Meta-analysis is being increasingly used as a tool for integrating data from different studies of complex phenotypes, because the power of any one study to identify causal loci is limited. We applied a novel meta-analytical approach (Loesgen et al. in Genet Epidemiol 21(Suppl 1):S142–S147, 2001) in compiling results from four studies of rheumatoid arthritis in Caucasians including two studies from NARAC (Jawaheer et al. in Am J Hum Genet 68:927–936, 2001; Jawaheer et al. in Arthritis Rheum 48:906–916, 2003), one study from the UK (MacKay et al. in Arthritis Rheum 46:632–639, 2001) and one from France (Cornelis et al. in Proc Natl Acad Sci USA 95:10746–10750, 1998). For each study, we obtained NPL scores by performing interval mapping (2 cM intervals) using GeneHunter2 (Kruglyak et al. in Am J Hum Genet 58:1347–1363, 1996; Markianos et al. in Am J Hum Genet 68:963–977, 2001). The marker maps differed among the three consortium groups, therefore, the marker maps were aligned after the interval mapping was completed and the NPL scores that were within 1 cM of each other were combined using the method of Loesgen et al. (Genet Epidemiol 21(Suppl 1):S142–S147, 2001) by calculating the weighted average of the NPL score. This approach avoids some problems in analysis encountered by using GeneHunter2 when some markers in the sample are not genotyped. This procedure provided marginal evidence (P<0.05) of linkage on chromosome 1, 2, 5 and 18, strong evidence (P<0.01) on chromosomes 8 and 16, and overwhelming evidence in the HLA region of chromosome 6.  相似文献   

3.

Background

The recent advancement in human genome sequencing and genotyping has revealed millions of single nucleotide polymorphisms (SNP) which determine the variation among human beings. One of the particular important projects is The International HapMap Project which provides the catalogue of human genetic variation for disease association studies. In this paper, we analyzed the genotype data in HapMap project by using National Institute of Environmental Health Sciences Environmental Genome Project (NIEHS EGP) SNPs. We first determine whether the HapMap data are transferable to the NIEHS data. Then, we study how well the HapMap SNPs capture the untyped SNPs in the region. Finally, we provide general guidelines for determining whether the SNPs chosen from HapMap may be able to capture most of the untyped SNPs.

Results

Our analysis shows that HapMap data are not robust enough to capture the untyped variants for most of the human genes. The performance of SNPs for European and Asian samples are marginal in capturing the untyped variants, i.e. approximately 55%. Expectedly, the SNPs from HapMap YRI panel can only capture approximately 30% of the variants. Although the overall performance is low, however, the SNPs for some genes perform very well and are able to capture most of the variants along the gene. This is observed in the European and Asian panel, but not in African panel. Through observation, we concluded that in order to have a well covered SNPs reference panel, the SNPs density and the association among reference SNPs are important to estimate the robustness of the chosen SNPs.

Conclusion

We have analyzed the coverage of HapMap SNPs using NIEHS EGP data. The results show that HapMap SNPs are transferable to the NIEHS SNPs. However, HapMap SNPs cannot capture some of the untyped SNPs and therefore resequencing may be needed to uncover more SNPs in the missing region.  相似文献   

4.
Development of addiction to alcohol or other substances can be attributed in part to exposure-dependent modifications at synaptic efficacy leading to an organism which functions at an altered homeostatic setpoint. Genetic factors may also influence setpoints and the stability of the homeostatic system of an organism. Quantitative genetic analysis of voluntary alcohol drinking, and mapping of the involved genes in the quasi-congenic Recombinant QTL Introgression strain system, identified Eac2 as a Quantitative Trait Locus (QTL) on mouse chromosome 6 which explained 18% of the variance with an effect size of 2.09 g/kg/day alcohol consumption, and Grm7 as a quantitative trait gene underlying Eac2 [Vadasz et al. in Neurochem Res 32:1099–1112, 100, Genomics 90:690–702, 102]. In earlier studies, the product of Grm7 mGluR7, a G protein-coupled receptor, has been implicated in stress systems [Mitsukawa et al. in Proc Natl Acad Sci USA 102:18712–18717, 63], anxiety-like behaviors [Cryan et al. in Eur J Neurosci 17:2409–2417, 14], memory [Holscher et al. in Learn Mem 12:450–455, 26], and psychiatric disorders (e.g., [Mick et al. in Am J Med Genet B Neuropsychiatr Genet 147B:1412–1418, 61; Ohtsuki et al. in Schizophr Res 101:9–16, 72; Pergadia et al. in Paper presented at the 38th Annual Meeting of the Behavior Genetics Association, Louisville, Kentucky, USA, 76]. Here, in experiments with mice, we show that (1) Grm7 knockout mice express increased alcohol consumption, (2) sub-congenic, and congenic mice carrying a Grm7 variant characterized by higher Grm7 mRNA drink less alcohol, and show a tendency for higher circadian dark phase motor activity in a wheel running paradigm, respectively, and (3) there are significant genetic differences in Grm7 mRNA abundance in the mouse brain between congenic and background mice identifying brain areas whose function is implicated in addiction related processes. We hypothesize that metabotropic glutamate receptors may function as regulators of homeostasis, and Grm7 (mGluR7) is involved in multiple processes (including stress, circadian activity, reward control, memory, etc.) which interact with substance use and the development of addiction. In conclusion, we suggest that mGluR7 is a significant new therapeutic target in addiction and related neurobehavioral disorders.  相似文献   

5.
Over the past 57 years, 17 recipients of frozen bone have been infected with: HIV (Centers for Disease Control and Prevention in Morb Mortal Wkly Rep MMWR 37(39):597–599, 1988; Li et al. in J Formos Med Assoc 100(5):350–351, 2001; Simonds et al. in NEJM 326(11):726–732, 1992; Schratt et al. in Unfallchirurg 99(9):679–684, 1996); HCV (Eggen and Nordbo in NEJM 326(6):411, 1992; Conrad et al. in J Bone Joint Surg Am 77:214–224, 1995; Trotter in J Bone Joint Surg Am 851(11):2215–2217, 2003; Tugwell et al. in Ann of Internal Med 143(9):648–654, 2005); or HBV (Shutkin in J Bone Joint Surg Am 36:160–162, 1954). However, bone, lyophilized and stored at room temperature, has never transmitted these viral diseases. A literature review was undertaken to determine whether there is any evidence that lyophilized bone is capable of transmitting HIV, HCV and HBV.  相似文献   

6.
7.
Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105–119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173–180, 2001, Biochemistry 44:3123–3132, 2005; Belyaeva et al. in Biophysics 51(6):976–990, 2006), need a substantial correction with respect to magnitude of the normalized variable fluorescence associated with single turnover-induced charge separation in RCs of PS II. Their data are conclusive with the involvement of donor side quenching, the release of which occurs with a rate constant in the range of tens of ms−1, and presumed to be associated with reduction of Y\textz + Y_{\text{z}}^{ + } by the OEC.  相似文献   

8.
Seven pairs of oat near-isogenic lines (NILs) (Kibite in Crop Sci 41:277–278, 2001) contrasting for the Dw6 dwarfing gene were used to test for correlation between tall/dwarf phenotype and polymorphic genotype using restriction fragment length polymorphism (RFLP) and other molecular markers selected from the Kanota × Ogle (K×O) (Wight et al. in Genome 46:28–47, 2003) and Terra × Marion (De Koeyer et al. in Theor Appl Genet 108:1285–1298, 2004) recombination maps. This strategy located the Dw6/dw6 locus to a small chromosomal region on K×O linkage group (LG) KO33, near or at a putative RFLP locus aco245z. Aco245z and other tightly linked flanking markers have potential for use in marker-assisted selection (MAS), and PCR-based markers were developed from several of these. RFLP genotyping of the Dw6 NILs indicated that 13 of the 14 individual lines were homogeneously maternal or paternal for a large genomic region near Dw6/dw6, an unexpected result for NILs. The cDNA clone aco245 codes for a vacuolar proton ATPase subunit H, a potential candidate gene for Dw6. Vacuolar proton ATPase enzymes have a central role in plant growth and development and a mutation in subunit C is responsible for the det3 dwarfing mutation in Arabidopsis thaliana (Schumacher et al. in Genes Dev 13:3259–3270, 1999). Aco245 affords the potential of designing highly precise diagnostic markers for MAS for Dw6. The Dw6 NILs have potential utility to investigate the role of vacuolar proton ATPases in growth and development in plants.  相似文献   

9.
Only two genome-wide association (GWA) screens have been published for melanoma (Nat Genet 47:920–925, 2009; Nat Genet 40:838–840, 2008). Using a unique approach, we performed a genome-wide association study in 156 related melanoma cases from 34 high-risk Utah pedigrees. Genome-wide association analysis was performed on nearly 500,000 markers; we compared cases to 2,150 genotypically matched samples from Illumina’s iControls database. We performed genome-wide association with EMMAX software, which is designed to account for population structure, including relatedness between cases. Three SNPs exceeded a genome-wide significance threshold of p < 5 × 10−8 on chromosome arm 10q25.1 (rs17119434, rs17119461, and rs17119490), where the most extreme p value was 7.21 × 10−12. This study represents a new and unique approach to predisposition gene identification; and it is the first genome-wide association study performed in related cases in high-risk pedigrees. Our approach illustrates an example of using high-risk pedigrees for the identification of new melanoma predisposition variants.  相似文献   

10.
In plants, reactive oxygen species (ROS) are short-lived molecules produced through various cellular mechanisms in response to biotic and abiotic stimuli. ROS function as second messengers for hormone signaling, development, oxygen deprivation, programmed cell death, and plant–pathogen interactions. Recent research on ROS-mediated responses has produced stimulating findings such as the specific sources of ROS production, molecular elements that work in ROS-mediated signaling and homeostasis, and a ROS-regulated gene network (Neill et al., Curr Opin Plant Biol 5:388–395, 2002a; Apel and Hirt, Annu Rev Plant Biol 55:373–399, 2004; Mittler et al., Trends Plant Sci 9:490–498, 2004; Mori and Schroeder, Plant Physiol 135:702–708, 2004; Kwak et al., Plant Physiol 141:323–329, 2006; Torres et al., Plant Physiol 141:373–378, 2006; Miller et al., Physiol Plant 133:481–489, 2008). In this review, we highlight new discoveries in ROS-mediated abscisic acid (ABA) signaling. Drs. Daeshik Cho and June M. Kwak are the corresponding authors for this paper.  相似文献   

11.
Power to detect risk alleles using genome-wide tag SNP panels   总被引:1,自引:0,他引:1       下载免费PDF全文
Advances in high-throughput genotyping and the International HapMap Project have enabled association studies at the whole-genome level. We have constructed whole-genome genotyping panels of over 550,000 (HumanHap550) and 650,000 (HumanHap650Y) SNP loci by choosing tag SNPs from all populations genotyped by the International HapMap Project. These panels also contain additional SNP content in regions that have historically been overrepresented in diseases, such as nonsynonymous sites, the MHC region, copy number variant regions and mitochondrial DNA. We estimate that the tag SNP loci in these panels cover the majority of all common variation in the genome as measured by coverage of both all common HapMap SNPs and an independent set of SNPs derived from complete resequencing of genes obtained from SeattleSNPs. We also estimate that, given a sample size of 1,000 cases and 1,000 controls, these panels have the power to detect single disease loci of moderate risk (λ ~ 1.8–2.0). Relative risks as low as λ ~ 1.1–1.3 can be detected using 10,000 cases and 10,000 controls depending on the sample population and disease model. If multiple loci are involved, the power increases significantly to detect at least one locus such that relative risks 20%–35% lower can be detected with 80% power if between two and four independent loci are involved. Although our SNP selection was based on HapMap data, which is a subset of all common SNPs, these panels effectively capture the majority of all common variation and provide high power to detect risk alleles that are not represented in the HapMap data.  相似文献   

12.
The absorbance spectra of visual pigments can be approximated with mathematical expressions using as single parameter the absorbance peak wavelength. A comparison of the formulae of Stavenga et al. in Vision Res 33:1011–1017 (1993) and Govardovskii et al. in Vis Neurosci 17:509–528 (2000) applied to a number of invertebrate rhodopsins reveals that both templates well describe the normalized α-band of rhodopsins with peak wavelength > 400 nm; the template spectra are virtually indistinguishable in an absorbance range of about three log units. The template formulae of Govardovskii et al. in Vis Neurosci 17:509–528 (2000) describe the rhodopsin spectra better for absorbances below 10−3. The template predicted spectra deviate in the ultraviolet wavelength range from each other as well as from measured spectra, preventing a definite conclusion about the spectral shape in the wavelength range <400 nm. The metarhodopsin spectra of blowfly and fruitfly R1-6 photoreceptors derived from measured data appear to be virtually identical. The established templates describe the spectral shape of fly metarhodopsin reasonably well. However, the best fitting template spectrum slightly deviates from the experimental spectra near the peak and in the long-wavelength tail. Improved formulae for fitting the fly metarhodopsin spectra are proposed.  相似文献   

13.
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656–662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613–28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575–583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451–461, 1998; Fissore et al. in Biol. Reprod. 60(1):49–57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979–3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750–13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506–510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660–2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73–86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation (“four-state channels”) and channels with Ca2+-activation only (“two-state channels”) and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.  相似文献   

14.
15.
Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.  相似文献   

16.
Conservation strategies for populations of woodland caribou Rangifer tarandus caribou frequently emphasize the importance of predator–prey relationships and the availability of lichen-rich late seral forests, yet the importance of summer diet and forage availability to woodland caribou survival is poorly understood. In a recent article, Wittmer et al. (Can J Zool 83:407–418, 2005b) concluded that woodland caribou in British Columbia were declining as a consequence of increased predation that was facilitated by habitat alteration. Their conclusion is consistent with the findings of other authors who have suggested that predation is the most important proximal factor limiting woodland caribou populations (Bergerud and Elliot in Can J Zool 64:1515–1529, 1986; Edmonds in Can J Zool 66:817–826, 1988; Rettie and Messier in Can J Zool 76:251–259, 1998; Hayes et al. in Wildl Monogr 152:1–35, 2003). Wittmer et al. (Can J Zool 83:407–418, 2005b) presented three alternative, contrasting hypotheses for caribou decline that differed in terms of predicted differences in instantaneous rates of increase, pregnancy rates, causes of mortality, and seasonal vulnerability to mortality (Table 1, p 258). These authors rejected the hypotheses that food or an interaction between food and predation was responsible for observed declines in caribou populations; however, the use of pregnancy rate, mortality season and cause of mortality to contrast the alternative hypotheses is problematic. We argue here that the data employed in their study were insufficient to properly evaluate a predation-sensitive foraging hypothesis for caribou decline. Empirical data on seasonal forage availability and quality and plane of nutrition of caribou would be required to test the competing hypotheses. We suggest that methodological limitations in studies of woodland caribou population dynamics prohibit proper evaluation of the mechanism of caribou population declines and fail to elucidate potential interactions between top-down and bottom-up effects on populations. An erratum to this article can be found at  相似文献   

17.
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167–6173, 1997; Slater et al. Biochemistry 43(23):7601–7609, 2004), PKCε (Das et al. Biochem J 421(3):405–413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964–37972, 2004; Das et al. Protein Sci 15(9):2107–2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.  相似文献   

18.
19.
Increased export of biologically available nitrogen (N) to the coastal zone is strongly linked to eutrophication, which is a major problem in coastal marine ecosystems (NRC (2000) Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC; Bricker et al. (1999) National Estuarine Eutrophication Assessment. Effects of nutrient enrichment in the nation’s estuaries. NOAA-NOS Special Projects Office, Silver Spring, MD). However, not all of the nitrogen input to a watershed is exported to the coast (Howarth et al. (1996) Biogeochemistry 35:75–139; Jordan and Weller (1996) Bioscience 46:655–664). Global estimates of nitrogen export to coasts have been taken to be 25% of watershed input, based largely on northeastern U.S. observations (Galloway et al. (2004) Biogeochemistry 70:153–226; Boyer et al. (2006) Global Biogeochem Cycle 20:Art. No. GB1S91). We applied the N budgeting methodology developed for the International SCOPE Nitrogen project (Howarth et al. (1996) Biogeochemistry 35:75–139; Boyer et al. (2002) Biogeochemistry 57:137–169) to 12 watersheds in the southeastern U.S., and compared them with estimates of N export for 16 watersheds in the northeastern U.S. (Boyer et al. (2002) Biogeochemistry 57:137–169). In southeastern watersheds, average N export was only 9% of input, suggesting the need for downward revision of global estimates. The difference between northern and southern watersheds is not a function of the absolute value of N inputs, which spanned a comparable range and were positively related to export in both cases. Rather, the proportion of N exported was significantly related to average watershed temperature (% N export = 58.41 e−0.11 * temperature; R 2 = 0.76), with lower proportionate nitrogen export in warmer watersheds. In addition, we identified a threshold in proportionate N export at 38°N latitude that corresponds to a reported breakpoint in the rate of denitrification at 10–12°C. We hypothesize that temperature, by regulating denitrification, results in increased proportionate N export at higher latitudes. Regardless of the mechanism, these observations suggest that temperature increases associated with future climate change may well reduce the amount of nitrogen that reaches estuaries, which will have implications for coastal eutrophication.  相似文献   

20.
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519–530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529–535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41–50, 2003; Qbadou et al., EMBO J 25:1836–1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号