首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
5.
6.
Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.  相似文献   

7.
We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.  相似文献   

8.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

9.
Abstract The gene coding for the β-subunit of the sodium ion translocating ATP synthase from Propionigenium modestum was cloned and sequenced. The predicted amino acid sequence resembles that of the β-subunits from proton-translocating ATP synthases. The same conserved regions are found in both types of ATP synthases. This is a good indication that the β-subunits of the proton and sodium ion translocating ATP synthases have evolved from a common ancestor.  相似文献   

10.
E J Bowman  T E Knock 《Gene》1992,114(2):157-163
We have isolated and sequenced cDNA and genomic clones encoding the alpha and beta subunits of the Neurospora crassa ATP synthase. The genes are not linked to each other: atp-1(alpha) maps to either linkage group I or V, and atp-2(beta) lies on linkage group II. The two genes resemble each other in having a large number of introns, five in atp-1 and seven in atp-2, mostly positioned near their 5' ends and varying in length from 60-332 bp. The coding regions of both genes have a high G+C content (59%) and use a low number of codons, 46 (atp-1) and 44 (atp-2), a feature associated with highly expressed genes. Northern-blot analysis shows both genes are expressed at high levels during mycelial growth. Comparison of the exon-intron structures of the beta-subunit-encoding gene with those from human and tobacco showed a similar number of introns, several closely positioned, but no exact conservation in position, size or sequence of introns.  相似文献   

11.
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.  相似文献   

12.
The system coordinating expressions of nuclear coded mitochondrial proteins was investigated by examination of the 5'-flanking region of the human mitochondrial ATP synthase beta-subunit gene. The promoter activity was measured by a transient expression of a chloramphenicol acetyltransferase (CAT) gene connected with various 5'-deletion mutants of the 5'-flanking region. In this experiment, at least two regions enhanced this promoter activity and at least one region repressed it. In one of the enhancing regions, a consensus sequence was found for the genes of other mitochondrial proteins such as those for cytochrome c1 (Suzuki, H., Hosokawa, Y., Nishikimi, M., and Ozawa, T. (1989) J. Biol. Chem. 264, 1368-1374) and the pyruvate dehydrogenase alpha-subunit (Maragos, C., Hutchison, W. M., Hayasaka, K., Brown, G. K., and Dahl, H.-H. M. (1989) J. Biol. Chem. 264, 12294-12298; Ohta, S., Endo, H., Matsuda, K., and Kagawa, Y. (1989) Ann. N. Y. Acad. Sci. 573, 458-460). The characteristics of this enhancing element were examined by introducing a synthetic oligonucleotide element into the CAT plasmid with a deleted enhancing element. The resulting plasmid showed full recovery of promoter activity, and this activity was independent of the orientation or location of the insert. Therefore, this is an enhancer that may be common to the nuclear genes of some mitochondrial proteins involved in energy transduction.  相似文献   

13.
The mitochondrially translated product called subunit 6 was extracted from the yeast Candida parapsilosis mitochondria using an organic solvent mixture and purified by reverse-phase HPLC. The partial N-terminal sequence of subunit 6 reveals a post-translational cleavage site as in Saccharomyces cerevisiae. The structural mitochondrial gene ATP6 was isolated form a mitochondrial DNA library using the oligonucleotide probe procedure. The gene and the surrounding regions were cloned into M13tg130 and M13tg131 phage vectors. The insert contained an open reading frame 738-bp encoding a 246-amino-acid polypeptide. Mature subunit 6 contains 243 amino acid residues and the predicted molecular mass is 26,511 Da. The subunit shows 52% similarity with ATP synthase subunit 6 of the yeast S. cerevisiae. Comparison between protein and DNA sequences shows that the CUN codon family codes for a leucine in C. parapsilosis mitochondria.  相似文献   

14.
15.
The beta subunit isolated from the chloroplast ATP synthase F1 (CF1) has a single dissociable nucleotide binding site, consistent with the proposed function of this subunit in nucleotide binding and catalysis. The beta subunit bound the nucleotide analogs trinitrophenyl-ATP (TNP-ATP) or trinitrophenyl-ADP (TNP-ADP) with nearly equal affinities (Kd = 1-2 microM) but did not bind trinitrophenyl-AMP. Both ATP and ADP effectively competed with TNP-ATP for binding. Other nucleoside triphosphates were also able to compete with TNP-ATP for binding to beta; their order of effectiveness (ATP greater than GTP, ITP greater than CTP) mimicked the normal substrate specificity of CF1. The single nucleotide binding site on the isolated beta subunit very closely resembles the low affinity catalytic site (site 3) of CF1 (Bruist, M.F., and Hammes, G. G. (1981) Biochemistry 20, 6298-6305), suggesting that tight nucleotide binding by other sites on the enzyme involves other CF1 subunits in addition to the beta subunit. The results are inconsistent with an earlier report (Frasch, W.D., Green, J., Caguial, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069), which suggested more than one nucleotide binding site per beta subunit. Binding of nucleotides to the isolated beta subunit was eliminated by a brief heat treatment (40 degrees C for 10 min) of the protein. A small change in the circular dichroism spectrum of beta accompanied the heat treatment indicating that a localized (rather than global) change in the folding of beta, involving at least part of the nucleotide binding domain, had occurred. Also accompanying the loss of nucleotide binding was a loss of the reconstitutive capacity of the beta subunit. ATP protected against the effects of the heat treatment.  相似文献   

16.
17.
The single sulfhydryl residue (cysteine-63) of the beta subunit of the chloroplast ATP synthase F1 (CF1) was accessible to labeling reagents only after removal of the beta subunit from the enzyme complex. This suggests that cysteine-63 may be located at an interface between the beta and the alpha subunits of CF1, although alternative explanations such as a conformational change in beta brought about by its release from CF1 cannot be ruled out. Cysteine-63 was specifically labeled with [(diethylamino)methylcoumarinyl]-maleimide, and the distance between this site and trinitrophenyl-ADP at the nucleotide binding site on beta was mapped using fluorescence resonance energy transfer. Cysteine-63 is located in a hydrophobic pocket, 42 A away from the nucleotide binding site on beta.  相似文献   

18.
Batten Disease is a lysosomal storage disease in which the major component that accumulates is subunit 9 of mitochondrial ATP synthase. Whether or not fibroblasts in culture exhibit this phenotype is controversial. We show that fibroblasts from a human Batten Disease patient and from a mouse model of this disease exhibit autofluorescent inclusion bodies. We also demonstrate that levels of ATP synthase subunit 9 are elevated in these diseased fibroblasts when compared to control cells. However, the exact growth state of the human fibroblasts was critical, and this factor probably accounts for discrepencies in the literature.  相似文献   

19.
20.
A yeast genomic library in the bacteriophage expression vector lambda gt11 was screened with a polyclonal anti-holo-ATPase antiserum resulting in the isolation of 54 immunoreactive clones. Four of these phage clones express in bacteria a polypeptide antigenically related to an 18 kDa subunit (P18) of the yeast mitochondrial ATPase complex. Molecular analysis of the yeast DNA inserts in these phage clones revealed two classes of yeast DNA that share little homology at the nucleotide sequence level and therefore may represent distinct separate genes. The polypeptides potentially encoded by these yeast DNA segments do show scattered short blocks of strong amino acid sequence homology, which may underlie the observed immunochemical relatedness between the proteins expressed in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号