共查询到20条相似文献,搜索用时 24 毫秒
1.
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone, all had IC(50) values between 1 and 5microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2. 相似文献
2.
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100 microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100 microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1 microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone all had IC(50) values between 1 and 5 microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2. 相似文献
3.
4.
Flyrén K Bergquist LO Castro VM Fotsch C Johansson L St Jean DJ Sutin L Williams M 《Bioorganic & medicinal chemistry letters》2007,17(12):3421-3425
A series of piperidine amide inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were identified via modifications of the HTS hit compound 1. The synthesis, in vitro biological evaluation, and structure-activity relationship of these compounds are presented. 相似文献
5.
He XY Yang YZ Peehl DM Lauderdale A Schulz H Yang SY 《The Journal of steroid biochemistry and molecular biology》2003,87(2-3):191-198
In vitro enzyme assays have demonstrated that human type 10 17beta-hydroxysteroid dehydrogenase (17beta-HSD10) catalyzes the oxidation of 5alpha-androstane-3alpha,17beta-diol (adiol), an almost inactive androgen, to dihydrotestosterone (DHT) rather than androsterone or androstanedione. To further investigate the role of this steroid-metabolizing enzyme in intact cells, we produced stable transfectants expressing 17beta-HSD10 or its catalytically inactive Y168F mutant in human embryonic kidney (HEK) 293 cells. It was found that DHT levels in HEK 293 cells expressing 17beta-HSD10, but not its catalytically inactive mutant, will dramatically increase if adiol is added to culture media. Moreover, certain malignant prostatic epithelial cells have more 17beta-HSD10 than normal controls, and can generate DHT, the most potent androgen, from adiol. This event might promote prostate cancer growth. Analysis of the 17beta-HSD10 sequence shows that this enzyme does not have any ER retention signal or transmembrane segments and has not originated by divergence from a retinol dehydrogenase. The data suggest that the unique mitochondrial location of this HSD [Eur. J. Biochem. 268 (2001) 4899] does not prevent it from oxidizing the 3alpha-hydroxyl group of a C19 sterol in living cells. The experimental results lead to the conclusion that mitochondrial 17beta-HSD10 plays a significant part in a non-classical androgen synthesis pathway along with microsomal retinol dehydrogenases. 相似文献
6.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause. 相似文献
7.
Sutin L Andersson S Bergquist L Castro VM Danielsson E James S Henriksson M Johansson L Kaiser C Flyrén K Williams M 《Bioorganic & medicinal chemistry letters》2007,17(17):4837-4840
2,5,5-Trisubstituted oxazolones were identified as potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The synthesis, structure-activity relationship and metabolic stability of these compounds are presented. 相似文献
8.
Wood J Bagi CM Akuche C Bacchiocchi A Baryza J Blue ML Brennan C Campbell AM Choi S Cook JH Conrad P Dixon BR Ehrlich PP Gane T Gunn D Joe T Johnson JS Jordan J Kramss R Liu P Levy J Lowe DB McAlexander I Natero R Redman AM Scott WJ Town C Wang M Wang Y Zhang Z 《Bioorganic & medicinal chemistry letters》2006,16(18):4965-4968
A series of 4,5-disubstituted cis-pyrrolidinones was investigated as inhibitors of 17beta-HSD II for the treatment of osteoporosis. Biochemical data for several compounds are given. Compound 42 was selected as the lead candidate. 相似文献
9.
Allan GM Vicker N Lawrence HR Tutill HJ Day JM Huchet M Ferrandis E Reed MJ Purohit A Potter BV 《Bioorganic & medicinal chemistry》2008,16(8):4438-4456
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone (E1) to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer. Syntheses and biological evaluation of novel non-steroidal inhibitors designed to mimic the E1 template are reported using information from potent steroidal inhibitors. Of the templates investigated biphenyl ethanone was promising and led to inhibitors with IC(50) values in the low micromolar range. 相似文献
10.
11.
Gunn D Akuche C Baryza J Blue ML Brennan C Campbell AM Choi S Cook J Conrad P Dixon B Dumas J Ehrlich P Gane T Joe T Johnson J Jordan J Kramss R Liu P Levy J Lowe D McAlexander I Natero R Redman AM Scott W Seng T Sibley R Wang M Wang Y Wood J Zhang Z 《Bioorganic & medicinal chemistry letters》2005,15(12):3053-3057
4,5-Disubstituted cis-pyrrolidinones were investigated as inhibitors of type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Early structure-activity relationship patterns for this class of compounds are discussed. 相似文献
12.
Type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Delta(4)-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3beta-peptido-3alpha-hydroxy-5alpha-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23-58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17beta-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3beta-(N-heptanoyl-L-phenylalanine-L-leucine-aminomethyl)-3alpha-hydroxy-5alpha-androstan-17-one (42) inhibited the enzyme with an IC(50) value of 227nM, which is twice as potent as the natural substrate Delta(4)-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR(+)) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 microM (less than previously reported type 3 17beta-HSD inhibitors) and, interestingly, no proliferation at 0.1 microM. 相似文献
13.
Aster SD Graham DW Kharbanda D Patel G Ponpipom M Santorelli GM Szymonifka MJ Mundt SS Shah K Springer MS Thieringer R Hermanowski-Vosatka A Wright SD Xiao J Zokian H Balkovec JM 《Bioorganic & medicinal chemistry letters》2008,18(9):2799-2804
3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented. 相似文献
14.
Zhu Y Olson SH Graham D Patel G Hermanowski-Vosatka A Mundt S Shah K Springer M Thieringer R Wright S Xiao J Zokian H Dragovic J Balkovec JM 《Bioorganic & medicinal chemistry letters》2008,18(11):3412-3416
3-(Phenylcyclobutyl)-1,2,4-triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). These were active both in vitro and in an in vivo mouse pharmacodynamic (PD) model. Fluorine substitution of the cyclobutane ring improved the pharmacokinetic profile significantly. The synthesis and structure-activity relationships are presented. 相似文献
15.
Olson S Aster SD Brown K Carbin L Graham DW Hermanowski-Vosatka A LeGrand CB Mundt SS Robbins MA Schaeffer JM Slossberg LH Szymonifka MJ Thieringer R Wright SD Balkovec JM 《Bioorganic & medicinal chemistry letters》2005,15(19):4359-4362
Adamantyl triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They are active both in in vitro and in in vivo pharmacodynamic models. The synthesis and structure-activity relationships of these inhibitors are presented. 相似文献
16.
LE Lain R Barrell KJ Saeed GS Nicholls PJ Simons C Kirby A Smith HJ 《Journal of enzyme inhibition and medicinal chemistry》2002,17(2):93-100
The 7-hydroxycoumarins, umbelliferone and 4-methylumbelliferone (IC50 = 1.4 and 1.9 microM, respectively) were potent inhibitors of human testes microsomal 17beta-HSD (type 3) enzyme whereas 7-methoxycoumarin, 4-hydroxycoumarin and 7-ethoxycoumarin had little or no inhibitory activity. Analogues of the weak inhibitory triphenylethenes tamoxifen and clomiphene but lacking the basic substituent, were weak inhibitors of the human microsomal enzyme. Inhibitory activity was improved by replacement of the triphenylethene structure with a triphenylmethyl (17, 52.6% inhibition) or phenylpropyl (16, 94.8%, IC50 = 42.1 microM) skeleton. Further studies on tamoxifen using rat testes microsomal 17beta-HSD showed that the inhibition was time-dependent and irreversible but not specifically mechanism-based. 相似文献
17.
Wang H Ruan Z Li JJ Simpkins LM Smirk RA Wu SC Hutchins RD Nirschl DS Van Kirk K Cooper CB Sutton JC Ma Z Golla R Seethala R Salyan ME Nayeem A Krystek SR Sheriff S Camac DM Morin PE Carpenter B Robl JA Zahler R Gordon DA Hamann LG 《Bioorganic & medicinal chemistry letters》2008,18(11):3168-3172
Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series. 相似文献
18.
Chalcones were tested for estimating anti-aromatase, anti-3beta-hydroxysteroid dehydrogenase delta5/delta4 isomerase (3beta-HSD) and anti-17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities in human placental microsomes. In the present study, we have demonstrated for the first time that chalcones are potent inhibitors of aromatase and 17beta-hydroxysteroid dehydrogenase activities: these enzymes being considered as important targets in the metabolic pathways of human mammary hormone-dependent cells. Our results showed that naringenin chalcone and 4-hydroxychalcone were the most effective aromatase and 17beta-hydroxysteroid dehydrogenase inhibitors with IC50 values of 2.6 and 16 microM respectively. In addition, inhibitory effects of some flavones and flavanones were compared to those of the corresponding chalcones. A structure-activity relationship was established and regions or/and substituents essential for these inhibitory activities were determined. 相似文献
19.
Estrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity. Three strategies were also devised to produce compounds with less residual estrogenic activity: (1) replacing the hydroxy group by a hydrogen at position 3 (C3); (2) adding a methoxy at C2; and (3) adding an alkylamide chain known to be antiestrogenic at C7. In order to test the inhibitory potency of the new compounds, we used the human breast cancer cell line T-47D, which exerts a strong endogenous 17beta-HSD1 activity. In this intact cell model, 16beta-m-carbamoylbenzyl-E2 (4m) emerged as a potent inhibitor of 17beta-HSD1 with an IC50 value of 44 nM for the transformation of [14C]-E1 (60 nM) into [14C]-E2 (24-h incubation). In another assay aimed at assessing the unwanted estrogenic activity, a 10-day treatment with 4m at a concentration of 0.5 microM induced some proliferation (38%) of T-47D estrogen-sensitive (ER+) breast cancer cells. Interestingly, when 4m (0.5 microM) was given with E1 (0.1 nM) in a 10-day treatment, it blocked 62% of the T-47D cell proliferation induced by E1 after its reduction to E2 by 17beta-HSD1. Thus, in addition to generating useful structure-activity relationships for the development of 17beta-HSD1 inhibitors, our study demonstrates that using such inhibitors is a valuable strategy for reducing the level of E2 and consequently its proliferative effect in T-47D ER+ breast cancer cells. 相似文献
20.
Vicker N Su X Ganeshapillai D Smith A Purohit A Reed MJ Potter BV 《The Journal of steroid biochemistry and molecular biology》2007,104(3-5):123-129
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series. 相似文献