首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Claisen-Schmidt condensation of 3-(1,2,3,6-tetrahydro-1-methylpyridin-4-yl)-2,4,5- trimethoxybenzaldehyde 3 and various aromatic, heterocyclic and alicyclic amides of 3- aminoacetophenone 6(a-s) afforded novel curcumin mimics. All the synthesized compounds were characterized by IR, (1)H NMR, Mass spectroscopy and evaluated for antioxidant, cytotoxicity and antimicrobial activity. Out of the 20 compounds screened, compounds 7i, 7l, 7q, and 7n have shown excellent radical scavenging activity, compounds 7o, 7t, 7f, and 7r have shown significant xanthine oxidase inhibition, and compounds 7a, 7k and 7l were found to be potent inhibitors of selected cancer cell lines. Compounds 7h, 7t, 7l, 7i, and 7e have shown good antibacterial activity, whereas compounds 7j, 7f, 7o, 7h, and 7t exhibited significant antifungal activity.  相似文献   

2.
Nucleotide cap analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized in which the 7-methyl moiety was replaced with 7-ethyl (e7), 7-propyl (p7), 7-isopropyl (ip7), 7-butyl (b7), 7-isobutyl (ib7), 7-cyclopentyl (cp7), 7-(carboxymethyl) (cm7), 7-benzyl (bn7), 7-(2-phenylethyl) [7-(2-PhEt)], and 7-(1-phenylethyl) [7-(1-PhEt)]. These derivatives were assayed as competitive inhibitors of capped mRNA translation in reticulocyte lysate. We observed that N7 alkyl and alicyclic substituents larger than ethyl significantly decreased the inhibitory activity of these cap analogues presumably by decreasing their affinity for cap binding proteins, which participate in the initiation of translation. This result defined a maximum size for this class of N7 substituents in the nucleotide binding domain of cap binding proteins. Like m7GMP, the N7-substituted GMP derivatives synthesized in this study were found to be predominantly in the anti conformation as determined by proton NMR analyses. However, bn7GMP and 7-(2-PhEt)GMP, which have aromatic N7 substituents, were more effective than m7GMP as competitive inhibitors of translation. The increased affinity of bn7GMP for cap binding proteins was further examined by synthesis of beta-globin mRNA containing 5'-bn7G, 5'-m7G, or 5'-e7G cap structures. These modified mRNAs were tested as translation templates. Messenger RNA capped with bn7G was observed to increase the translation activity of the template 1.8-fold relative to that of its m7G-capped mRNA counterpart. By contrast, e7G-capped mRNA was 25% less active than m7G-capped mRNA.2+V photo-cross-linking of m7G-capped mRNA to cap binding proteins  相似文献   

3.
The metabolism of epimeric 7-hydroxycholesterol was studied in vitro. 7Alpha-hydroxycholesterol or 7beta-hydroxycholesterol were incubated with rabbit, guinea pig, rat, hamster, and chicken microsomal suspensions and then extracted and analyzed using high-performance liquid chromatography (HPLC). 7Alpha-hydroxy-4-cholesten-3-one was the main product from 7alpha-hydroxycholesterol in the rabbit, guinea pig, and rat. A considerable amount of 7-ketocholesterol was also produced in the hamster and chicken. In all vertebrates, 7beta-hydroxycholesterol was converted only to 7-ketocholesterol in all vertebrates. 7Beta-hydroxy-4-cholesten-3-one was not detected. Reduction of 7-ketocholesterol was also studied in the rat and hamster. Whereas 7-ketocholesterol was converted to 7beta-hydroxycholesterol in the rat, it was converted to both 7alpha- and 7beta-hydroxycholesterol in the hamster. These results suggest that 7alpha-hydroxycholesterol is converted not only to 7alpha-hydroxy-4-cholesten-3-one but also to 7-ketocholesterol in the hamster and chicken. 7Beta-hydroxycholesterol was converted to 7-ketocholesterol in all vertebrates tested. The interconversion between 7alpha- and 7beta-hydroxycholesterol via 7-ketocholesterol was observed in the hamster in this in vitro study.  相似文献   

4.
7 beta-Methyl-chenodeoxycholic acid (7-MeCDC, 3 alpha, 7 alpha-dihydroxy-7 beta-methyl-5 beta-cholan-24-oic acid), 7 alpha-methyl-ursodeoxycholic acid (7-MeUDC, 3 alpha, 7 beta-dihydroxy-7 alpha-methyl-5 beta-cholan-24-oic acid), 7 xi-methyl-lithocholic acid (7-MeLC, 3 alpha-hydroxy-7 xi-methyl-5 beta-cholan-24-oic acid) and ursodeoxycholylsarcosine (UDCS) were tested as inhibitors of bacterial bile acid 7 alpha-dehydroxylase activity. At a concentration of 50 microM, 7-MeCDC and 7-MeUDC inhibited enzyme activity by 66% and 12%, respectively. 7 alpha-Dehydroxylase activity was not inhibited in the presence of 7-MeLC and UDCS. None of the four bile acid analogs tested inhibited the growth of Eubacterium sp. V.P.I. 12708 at concentrations up to 100 microM.  相似文献   

5.
Protein-tyrosine kinase 7 (PTK7) is a member of the defective receptor protein-tyrosine kinases and is known to function as a regulator of planar cell polarity during development. Its expression is up-regulated in some cancers including colon carcinomas. A 100-kDa fragment of PTK7 was detected in the culture media from colon cancer cells and HEK293 cells. The shed fragment was named sPTK7-Ig1-7 because its molecular mass was very similar to that of the entire extracellular domain of PTK7 that contains immunoglobulin-like loops 1 to 7 (Ig1-7). The shedding of sPTK7-Ig1-7 was enhanced by treatment with phorbol 12-myristate 13-acetate. In addition to the sPTK7-Ig1-7 found in the culture medium, two C-terminal fragments of PTK7 were detected in the cell lysates: PTK7-CTF1, which includes a transmembrane segment and a cytoplasmic domain, and PTK7-CTF2, which lacks most of the transmembrane segment from PTK7-CTF1. Analysis of PTK7 processing in the presence of various protease inhibitors or after knockdown of potential proteases suggests that shedding of PTK7 into sPTK7-Ig1-7 and PTK7-CTF1 is catalyzed by ADAM17, and further cleavage of PTK7-CTF1 into PTK7-CTF2 is mediated by the γ-secretase complex. PTK7-CTF2 localizes to the nucleus and enhances proliferation, migration, and anchorage-independent colony formation. Our findings demonstrate a novel role for PTK7 in the tumorigenesis via generation of PTK7-CTF2 by sequential cleavage of ADAM17 and γ-secretase.  相似文献   

6.
A total of 15 different genome types of adenovirus type 7 (Ad7), i.e., Ad7p, Ad7p1, Ad7a, Ad7a1 to Ad7a5, Ad7b, Ad7c, Ad7d, Ad7d1, Ad7e, Ad7f, and Ad7g, were identified among 40 selected strains isolated in Europe, Asia, North America, South America, and Australia by using restriction endonucleases BamHI, BclI, BglI, BglII, BstEII, EcoRI, HindIII, HpaI, SalI, SmaI, XbaI, and XhoI. Eight of them, Ad7p1, Ad7a1 to Ad7a5, Ad7d1, and Ad7g, are newly discovered. All 15 genome types could be distinguished by the four restriction endonucleases BamHI, BclI, BglI, and XbaI. At least four restriction sites differed between Ad7d and Ad7g. Pairwise analyses of comigrating DNA restriction fragments of all 15 Ad7 genome types were performed and presented in a schematic fashion. According to the degree of comigration of DNA restriction fragments, the 15 genome types could be divided into three clusters. Ad7b was the dominant genome type in different parts of the world and may have evolved in China into Ad7d and further to Ad7d1.  相似文献   

7.
A series of novel piperazine based cinnamic acid bearing coumarin derivatives were designed and synthesized by piperazine based cinnamic acids esterification with 4-hydroxycoumarin and characterized by various spectral techniques like infrared, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass. The novel bioactive compounds (7a-7m) screen their potential against different bacterial and fungal strains. Compound 7g (minimum inhibitory concentration [MIC] = 12.5 µg/ml) exhibited potent antibacterial activity against Escherichia coli strain. Compounds 7d, 7f, 7g, 7k, 7l , and 7m showed potent antibacterial activity against all bacterial strains. Compounds 7a, 7g, 7h, 7k, 7l , and 7m exhibited potent antifungal activity against all fungal strains. Furthermore, a molecular docking study revealed that compounds 7d, 7f, 7g , and 7k could bind to the active site of E. coli DNA gyrase subunit B protein and form hydrogen bonding with crucial amino acid residues Arg136 in the active sites. Comprehensively, our study recommends that 7d, 7f, 7g , and 7k could be a promising lead for developing more efficient antimicrobial drug candidates and DNA gyrase inhibitors.  相似文献   

8.
MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.  相似文献   

9.
10.
在国内首次用等电聚焦和酶连免疫标记方法调查哈尔滨、西安、成都、贵阳、漳州等五个汉族群体的补体第七成分(C7)的遗传多态性。结果表明,C7*1基因频率最高,在0.8152至0.9144之间。C7*2频率在四个亚群中为0.0528至0.0849,但在贵阳人群中高达0.1527,是目前世界上已观察到的最高值。C7*4频率在五个亚群中无显著差异,在0.0180至0.0402之间。没有观察到C7*4有由北方人群扩散到南方的明显趋势。在南方的三个汉族亚群中观察到在高加索人和日本人群中存在的C7*3基因。  相似文献   

11.
12.
Zidovudine (AZT) is the most commonly prescribed antiviral drug for the treatment of human immunodeficiency virus (HIV) infection. However, its chronic administration causes toxic side effects limiting its use. This study aimed to evaluate the toxicity of different concentrations of AZT and novel chalcogen derivatives (7A, 7D, 7G, 7K, 7M) on locomotion, mitochondrial dysfunction, acetylcholinesterase (AChE) activity, and production of reactive oxygen species (ROS) in adult Drosophila melanogaster. Our results show that AZT and its derivative 7K at a concentration of 10 μM impaired flies' locomotor behavior. Furthermore, AZT and the derivatives 7K, 7A, and 7M induced mitochondrial dysfunction observed by a decrease in oxygen flux through mitochondrial complexes I and II. Neither of the compounds tested affected AChE activity or ROS production in flies. According to these data, AZT derivatives presented the following decreasing order of toxicity: 7K > AZT > 7G > 7A > 7M > 7D. Based on the chemical structure, it is possible to infer that the presence of the seleno-phenyl group in 7A and 7G increases their toxicity compared to compounds 7D and 7M. In addition, compounds 7G, 7M, and 7K with three carbon atoms as spacer were more toxic than analogs containing one carbon atom (7A and 7D). Finally, the insertion of a p-methoxyl group enhances toxicity (7K). Based on these results, excepting 7K, all other chalcogen derivatives presented lower toxicity than AZT and are potential drug candidates.  相似文献   

13.
14.
15.
The CD7 gp40 molecule is a member of the Ig gene superfamily and is expressed on T cell precursors before their entry into the thymus during fetal development. N-terminal amino acids 1-107 of CD7 are highly homologous to Ig kappa-L chains whereas the carboxyl-terminal region of the extracellular domain of CD7 is proline-rich and has been postulated to form a stalk from which the Ig domain projects. To define potential functional regions of CD7, we have studied the surface topography of the CD7 Ag by synthesizing peptides corresponding to linear sequences within the CD7 extracellular domains, by raising polyclonal anti-CD7 rabbit sera against these peptides, and by computer analysis of the primary CD7 amino acid sequence. Polyclonal anti-CD7 sera were studied using indirect immunofluorescence, RIA, radioimmunoprecipitation, and Western blot assays. Computer analysis was performed comparing the CD7 sequence with all other known protein sequences. We found that three CD7 epitopes defined by peptides CD7-1A (AA 1-38), CD7-4 (AA 48-74), and CD7-7 (AA 129-146) were available for binding antibody on the surface of the CD7 molecule. Using computer analysis, we transposed the amino acid sequence of the CD7 Ig kappa-like N-terminal domain of CD7 onto the spatial coordinates of REI, a previously reported Ig kappa-molecule highly homologous (48%) to the CD7 N-terminal Ig-like region. Based on computer analysis of this putative CD7 three-dimensional structure, both the CD7-1A and CD7-4 regions protruded from the surface of the N-terminal domain of the CD7 molecule. Finally, comparison of the CD7 transmembrane sequence with CD4 and HIV transmembrane sequences and with respiratory syncytial virus fusion sequences demonstrated similar sequence motifs among these molecules.  相似文献   

16.
Effect of chronic ethanol feeding on oxysterols in rat liver   总被引:2,自引:0,他引:2  
It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.  相似文献   

17.
The cytochrome p450-dependent formation and subsequent interconversion of dehydroepiandrosterone (DHEA) metabolites 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA was observed in human, pig, and rat liver microsomal fractions. Rat liver mitochondria and nuclei also converted DHEA to 7 alpha-OH-DHEA and 7-oxo-DHEA, but at a lower rate. With NADP(+), and less so with NAD(+), rat, pig, and human liver microsomes and rat liver mitochondria and nuclei converted 7 alpha-OH-DHEA to 7-oxo-DHEA. This reaction was inhibited by corticosterone and the 11 beta-hydroxysteroid dehydrogenase (11 betaHSD) inhibitor carbenoxolone (CBX). The conversion of 7 alpha-OH-DHEA to 7-oxo-DHEA by rat kidney occurred at higher rates with NAD(+) than with NADP(+) and was inhibited by corticosterone. With NADPH, 7-oxo-DHEA was converted to unidentified hydroxylated metabolites and low levels of 7 alpha-OH-DHEA by rat liver microsomes. In contrast, pig liver microsomal fractions reduced 7-oxo-DHEA to nearly equal amounts of 7 alpha- and 7 beta-OH-DHEA, while human fractions produced mainly 7 beta-OH-DHEA. Dehydrocorticosterone inhibited the reduction to both isomers by pig liver microsomes, but only to 7 alpha-OH-DHEA by human microsomes; CBX inhibited both reactions. Rat kidney did not reduce 7-oxo-DHEA with either NADPH or NADH. These results demonstrate that DHEA is first converted in liver to 7 alpha-OH-DHEA, which is subsequently oxidized to 7-oxo-DHEA in both liver and kidney. In liver, interconversion of 7-oxo-DHEA and 7-OH-DHEA isomers is largely catalyzed by 11 betaHSD1, while in kidney 11 betaHSD2 (NAD(+)-dependent) and 11 betaHSD3 (NADP(+)-dependent) likely catalyze the unidirectional oxidation of 7 alpha-hydroxy-DHEA to 7-oxo-DHEA. Distinct species-specific routes of metabolism of DHEA and the interconversion of its metabolites obviate extrapolation of animal studies to humans.  相似文献   

18.
19.
20.
Avian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n) with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.c) due to the fact that H7N7 is a poor inducer of neutralizing antibodies. Interestingly, our recent vaccine studies reported that mice when vaccinated subcutaneously with Bac-HA (H7N9) was protected against both H7N9 (A/Sh2/2013) and H7N7 virus challenge. HA1 region of both H7N7 and H7N9 viruses are differ at 15 amino acid positions. Among those, we selected three amino acid positions (T143, T198 and I211) in HA1 region of H7N7. These amino acids are located within or near the receptor binding site. Following the selection, we substituted the amino acid at these three positions with amino acids found on H7N9HA wild-type. In this study, we evaluate the impact of amino acid substitutions in the H7N7 HA-protein on the immunogenicity. We generated six mutant constructs from wild-type influenza H7N7HA cDNA by site directed mutagenesis, and individually expressed mutant HA protein on the surface of baculovirus (Bac-HAm) and compared their protective efficacy of the vaccines with Bac-H7N7HA wild-type (Bac-HA) by lethal H7N7 viral challenge in a mouse model. We found that mice immunized subcutaneously with Bac-HAm constructs T143A or T198A-I211V or I211V-T143A serum showed significantly higher hemagglutination inhibition and neutralization titer against H7N7 and H7N9 viruses when compared to Bac-HA vaccinated mice groups. We also observed low level of lung viral titer, negligible weight loss and complete protection against lethal H7N7 viral challenge. Our results indicated that amino acid substitution at position 143 or 211 improve immunogenicity of H7N7HA vaccine against H7N7/NL/219/03 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号