首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The above article, from Journal of Cellular Biochemistry, “lncRNA CCAT1 contributes to the growth and invasion of gastric cancer via targeting miR-219-1” by Yanfeng Li, Guanyu Zhu, Yan Ma, and Hongyan Qu published online on 12 December 2017 in Wiley Online Library (wileyonlinelibrary.com), has been withdrawn by agreement between the journal Editor in Chief Gary S. Stein and John Wiley and Sons, Inc. The retraction has been agreed because the authors are not responding to requests to finalize their article for publication in the journal as the Version of Record.  相似文献   

3.
4.
5.
6.
用反转录PCR从正常人胚胎肺细胞中获得了p21基因cDNA,将其插入真核表达载体pMSCVneo,构建成重组质粒pMS21,并将其转染至肺癌细胞株A549。通过集落形成观察到p21对肺癌细胞具有明显的抑制作用,经RNA狭缝杂交、Western印迹分析和免疫细胞化学实验证实这是p21表达的结果。荷瘤裸鼠实验也进一步证实了p21对肺癌细胞具有明显的抑制作用。  相似文献   

7.
A new ascites type neuroblastoma clone (NAs-1), which is characteristic both in anchorage-independent growth and catecholaminergic functions, attached on the monolayer culture of glioblasts and was subjected to morphological differentiation including the extrusion of neuronal processes. Other conventional neuroblastoma cells (Neuro2a, NS-20Y, and N1E-115) as well as NAs-1 in cocultured with normal glioblasts underwent a decrease in cell growth rates and DNA synthesis under the effect of the neuroblastoma growth inhibitory factor (NGIF) produced by glioblasts. After their NGIF production had been reduced by u.v. irradiation, glioblasts lost the growth-inhibitory and differentiation-promoting effects in coculture with NAs-1. The supplement of NGIF into u.v.-treated glioblasts restored the dose-dependent growth inhibition of NAs-1. The addition of nerve growth factor into the coculture system brought about neither the marked effect on growth inhibition of NAs-1 nor the morphological differentiation. The results imply a direct function of NGIF on the paracrine regulation of neuroblastoma cell growth in the coculture with normal glioblasts.  相似文献   

8.
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells'' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.  相似文献   

9.
Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12-96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01-1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.  相似文献   

10.
Expression of neuronal phenotypes in neuroblastoma cell hybrids   总被引:11,自引:0,他引:11  
  相似文献   

11.
12.
目的:探讨胃癌组织硫氧还蛋白还原酶1(TrxR1)表达与生存时间的关系及其对胃癌细胞生长的影响。方法:用Real-time PCR法检测76例胃癌组织及癌旁TrxR1 mRNA表达,并分析其与胃癌患者临床病理特征及预后的关系;随机选取3例胃癌组织及癌旁组织,采用免疫组化法、Western blot法检测TrxR1蛋白表达。采用Western blot法和Real-time PCR法检测胃癌细胞系及人胃粘膜上皮细胞中TrxR1的表达。采用小RNA干扰序列(siRNA)处理AGS细胞,根据处理方法不同将AGS细胞分为3组:阴性对照组:转染NC-siRNA、TRXR1 siRNA干扰1组:转染TRXR1-siRNA1、TRXR1 siRNA干扰2组:转染TRXR1-siRNA2。使用Real-time PCR法检测各组AGS细胞中TrxR1 mRNA的表达,克隆形成试验和MTT法检测AGS细胞生长情况。结果:胃癌组织中TrxR1 mRNA和蛋白表达量均显著性上调,TrxR1主要定位于细胞质中。TrxR1高表达与患者TNM分期及淋巴结转移有关,且TrxR1高表达组患者的中位生存时间短于低表达组...  相似文献   

13.
Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology.  相似文献   

14.
Recent finding has shown that LIMS2 (also known as PINCH2) functions as a natural regulator of the LIMS1-ILK-parvin complex formation and is associated with cell spreading and migration via integrins at focal adhesions. Here, we report for the first time the epigenetic silencing of LIMS2 in gastric tumors. Downregulation of LIMS2 was detected in 91% (10 of 11) of gastric cancer cell lines by real-time quantitative RT-PCR and 80% (8 of 10) of the LIMS2-downregulated cell lines were associated with CpG island hypermethylation at a 5'-upstream region of LIMS2. Furthermore, LIMS2 was restored in its non-expressing cell lines after treatment with 5-Aza-dC and/or trichostatin A. Loss of expression of LIMS2 was also detected in 53% (51 of 96) of primary gastric tumors. This decrease in expression level significantly correlated with an increase of the CpG island hypermethylation. In addition, the methylation status in any normal-appearing gastric tissues was gradually increased in an age-dependent manner, suggesting that the positive methylation in normal-appearing gastric mucosa can be due to 'field cancerization effect' as an early event in gastric carcinogenesis. Moreover, the transient transfection of LIMS2-siRNA significantly stimulated cell migration in gastric cancer cells but had no effects on cell growth. These results suggest that the frequent inactivation of LIMS2 by epigenetic alteration in gastric cancer may be important in tumor progression events, such as invasion and metastasis. Thus, LIMS2 may be useful as a molecular biomarker and a therapeutic target by increasing its expression and activity in gastric cancer.  相似文献   

15.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

16.
目的:探讨小细胞肺癌(SCLC)组织和小细胞肺癌细胞(H446)中肌糖蛋白-C(TN-C)的表达及STAT3对TN-C表达的影响。方法:应用免疫组化法检测58例小细胞肺癌和17例癌旁正常组织中TN-C的表达水平,应用RT-PCR和Western blotting法检测STAT-siRNA和STAT3过表达的H446细胞中TN-C的表达水平。结果:(1)小细胞肺癌组织中TN-C的表达水平显著高于癌旁正常组织(P〈0.05);(2)在H446细胞中,TN-C和STAT3均呈现高表达;(3)STAT3-siRNA处理的H446细胞中STAT3和TN-C的表达均显著降低(P〈0.05),而STAT3过表达的H446细胞中STAT3和TN-C的表达均显著上调(P〈0.05)。结论:TN-C在小细胞肺癌中的表达上调,可能受到STAT3的调控。  相似文献   

17.
目的:探讨小细胞肺癌(SCLC)组织和小细胞肺癌细胞(H446)中肌糖蛋白-C(TN-C)的表达及STAT3 对TN-C表达的影响。 方法:应用免疫组化法检测58 例小细胞肺癌和17 例癌旁正常组织中TN-C 的表达水平,应用RT-PCR和Western blotting 法检测 STAT-siRNA和STAT3 过表达的H446 细胞中TN-C 的表达水平。结果:(1)小细胞肺癌组织中TN-C 的表达水平显著高于癌旁正 常组织(P<0.05);(2)在H446细胞中,TN-C 和STAT3 均呈现高表达;(3)STAT3-siRNA 处理的H446 细胞中STAT3 和TN-C 的表 达均显著降低(P<0.05),而STAT3 过表达的H446 细胞中STAT3 和TN-C 的表达均显著上调(P<0.05)。结论:TN-C 在小细胞肺癌 中的表达上调,可能受到STAT3 的调控。  相似文献   

18.
19.
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(trichostatin A,TSA)对人非小细胞肺癌(NSCLC)A549细胞增殖抑制作用及机制.方法:以不同剂量TSA(0.1μM,0.5pM和1μM)处理A549细胞.MTT法检测细胞增殖情况,碘化丙啶(PI)染色结合流式细胞仪检测细胞周期,Westem blot法检测P21蛋白表达,流式细胞仪检测细胞线粒体膜电位和细胞凋亡.结果:TSA剂量依赖性抑制肺癌A549细胞增殖,表现为细胞周期阻滞于G2/M期,同时P21蛋白表达增高;此外,TSA还可以剂量依赖性的促进A549细胞凋亡,伴有线粒体膜电位下降.结论:TSA促进NSCLCA549细胞周期阻滞和凋亡,从而抑制其增殖.  相似文献   

20.
Long noncoding RNAs (lncRNAs) CASC11 is an oncogenic lncRNA in gastric cancer and colorectal cancer. Our study aimed to investigate the role of lncRNA CASC11 in bladder cancer. In this study we showed that plasma lncRNA CASC11 was upregulated, while plasma miRNA-150 was downregulated in patients with early-stage bladder cancer than in healthy controls. Altered expression of plasma lncRNA CASC11 and miRNA-150 separated patients with bladder cancer from healthy controls. lncRNA CASC11 expression was inversely correlated with miRNA-150 expression in patients with bladder cance but not in healthy controls. Overexpression of lncRNA CASC11 mediated the inhibition of miRNA-150 expression in cancer cells, while miRNA-150 overexpression did not significantly alter lncRNA CASC11 expression. lncRNA CASC11 overexpression promoted, while miRNA-150 overexpression inhibited cancer cell proliferation. miRNA-150 also attenuated the enhancing effects of lncRNA CASC11 overexpression on cancer cell proliferation. However, overexpression of lncRNA CASC11 showed no significant effects on cancer cell migration and invasion. Therefore, lncRNA CASC11 may promote cancer cell proliferation in bladder cancer, and the actions of lncRNA CASC11 are likely through miRNA-150.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号