首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Besides serving as oxidisable substrates, fatty acids (FA) are involved in co- and post-translational modification of proteins (protein acylation). Despite the high rate of fatty acid utilisation in the heart, information on protein acylation in cardiac muscle is scarce. To explore this subject in more detail, we used the H9c2 cell line as an experimental model. After incubation with 3H-palmitate or 3H-myristate, cells were lysed and proteins precipitated, followed by extensive delipidation. The delipidated proteins were subjected to SDS-PAGE and transferred to nitro-cellulose prior to autoradiography. In addition, TLC was used to separate the various lipid classes. The first aspect we addressed was the extent of protein acylation as a function of time, relative to fatty acid incorporation into various lipid classes. Cells were incubated for 30 min, 1 h and 2 h with 100 Ci palmitate (PA, 2.3 nmol) or 125 Ci myristate (MA, 2.5 nmol). Palmitoylation increased from 0.48 ± 0.25 to 1.25 ± 0.56 Ci/mg protein between 30 min to 2 h, while myristoylation increased from 0.25 ± 0.12 to 0.77 ± 0.36 Ci/mg protein. Furthermore, delipidated proteins subjected to autoradiography showed that a set of distinct proteins was labelled with 3H-palmitate. Incorporation into phospholipids (PL) increased from 40–60% of the total amount of radio-labelled PA or MA supplied between 30 min and 2 h. Only the FA pool differed between MA and PA, with a higher FA content present after incubations with MA. Second, we investigated palmitoylation and incorporation into cellular lipids as a function of the amount of PA applied. Palmitoylation showed saturation at high PA concentrations. The percentage incorporation of 3H-PA in the various lipids depended on the amount of PA added: a decline in the PL pool with a concomitant increase in the size of the diacylglycerol pool at high PA concentrations. Third, inhibition of palmitoylation by cerulenin and tunicamycin was investigated. While both were able to inhibit palmitoylation, cerulenin also inhibited the incorporation of PA into various lipid classes, indicating differences in inhibitory action.  相似文献   

4.
The application of mechanical stimuli to cells often induce increases in intracellular calcium, affecting the regulation of a variety of cell functions. Although the mechanism of mechanotransduction-induced calcium increases has not been fully resolved, the involvement of mechanosensitive ion channels in the plasma membrane and the endoplasmic reticulum has been reported. Here, we demonstrate that voltage-gated L-type calcium channels play a critical role in the mechanosensitive calcium response in H9c2 rat cardiomyocytes. The intracellular calcium level in H9c2 cells increased in a reproducible dose-dependent manner in response to uniaxial stretching. The stretch-activated calcium response (SICR) completely disappeared in calcium-free medium, whereas thapsigargin and cyclopiazonic acid, inhibitors of sarcoendoplasmic reticulum calcium ATPase, partially reduced the SICR. These findings suggest that both calcium influx across the cell membrane and calcium release from the sarcoendoplasmic reticulum are involved in the SICR. Nifedipine, diltiazem, and verapamil, inhibitors of L-type calcium channels, reduced the SICR in a dose-dependent manner. Furthermore, small interfering RNA against the L-type calcium channel α1c subunit diminished the SICR dramatically. Nifedipine also diminished the mechanosensitivity of Langendorff-perfused rat heart. These results suggest that the SICR in H9c2 cardiomyocytes involves the activation of L-type calcium channels and subsequent calcium release from the sarcoendoplasmic reticulum.  相似文献   

5.
Thyroid stimulating hormone (TSH) is shown to have definite anabolic effects on skeletal metabolism. Previous studies have demonstrated that Insulin-like growth factors (IGF-I and IGF-II) and their six high affinity binding proteins (IGFBPs 1-6) regulate proliferation and differentiation of bone-forming osteoblasts. The current study was intended to determine whether the anabolic effects of TSH on human osteoblastic (SaOS2) cells are mediated through insulin-like growth factor system components. TSH given at 0.01 ng to 10 ng/ml dose levels for 24 and 48 h significantly increased human osteoblastic (SaOS2) cell proliferation and alkaline phosphatase activity, the differentiation marker. TSH significantly increased IGFs (IGF-I and IGF-II) mRNA expression after 6 and 24 h and their protein levels after 24 and 48 h of treatment, respectively. Unlike the IGFs, the IGFBPs responded differently to TSH treatment. Though there were some inconsistencies in the regulation of stimulatory IGF binding protein-3 and -5 by TSH treatment, there was an overall increase at the mRNA abundance and protein levels. Again, the inconsistency persisted at the regulation of the inhibitory IGFBPs 2, 4, and 6 especially at the level of mRNA expression due to TSH treatment, there is an overall decrease in the levels of IGFBP-2, 4, and 6 in the conditioned media (CM) of SaOS2 cell cultures. The IGFBP proteases which control the availability of IGFs are also regulated by hormones. Pregnancy-Associated Plasma Protein-A (PAPP-A) is responsible for the proteolysis of IGFBP-4. TSH treatment significantly unregulated the expression of PAPP-A both at mRNA and protein levels. In conclusion, TSH promotes human osteoblastic (SaOS2) cell proliferation and differentiation by upregulating IGFs and their stimulatory IGF binding proteins and down regulating the inhibitory IGF binding proteins.  相似文献   

6.
HMGCS2 (hydroxymethylglutaryl CoA synthase 2), the gene that regulates ketone body production, is barely expressed in cultured cell lines. In this study, we restored HMGCS2 expression and activity in HepG2 cells, thus showing that the wild type enzyme can induce fatty acid β-oxidation (FAO) and ketogenesis, whereas a catalytically inactive mutant C166A did not generate either process. Peroxisome proliferator-activated receptor (PPAR) α expression also induces fatty acid β-oxidation and endogenous HMGCS2 expression. Interestingly, PPARα-mediated induction was abolished when HMGCS2 expression was down-regulated by RNAi. These results indicate that HMGCS2 expression is both sufficient and necessary to the control of fatty acid oxidation in these cells. Next, we examined the expression pattern of several PPARα target genes in this now "ketogenic" HepG2 cell line. FGF21 (fibroblast growth factor 21) expression was specifically induced by HMGCS2 activity or by the inclusion of the oxidized form of ketone bodies (acetoacetate) in the culture medium. This effect was blunted by SirT1 (sirtuin 1) RNAi, so we propose a SirT1-dependent mechanism for FGF21 induction by acetoacetate. These data suggest a novel feed-forward mechanism by which HMGCS2 could regulate adaptive metabolic responses during fasting. This mechanism could be physiologically relevant, because fasting-mediated induction of liver FGF21 was dependent on SirT1 activity in vivo.  相似文献   

7.
8.
Autophagy, a self-eating process, is responsible for degradation of long-lived proteins and damaged cellular proteins/organelles. Double-membrane autophagosomes, formed during the process, engulf proteins/organelles and fuse with lysosomes to degrade the contents. It is important to maintain cell homeostasis and many physiological processes including cellular responses to oxidative stress. Oxidative stress induced by myocardial infarction is a major factor of heart failures. In this study, we examined how propofol modulates hydrogen peroxide (H2O2)-induced autophagic cell death in H9c2 cardiomyocytes. H2O2 dramatically induced cell death, which was similarly reduced in the presence of either propofol or autophagy inhibitors (e.g., wortmannin), suggesting that propofol has a protective effect in H2O2-induced autophagic cell death. Acidic autophagic vacuoles were elevated in H2O2-treated H9c2 cells, but they were largely decreased in the presence of propofol. Furthermore, many autophagy-related proteins such as LC3-II, ATG proteins, p62, AMPK, and JNK were activated in H2O2-treated H9c2 cells and were significantly deactivated in the presence of propofol. These results show that propofol regulates oxidative stress-induced autophagic cell death in cardiomyocytes. We further suggest that propofol can act as a cardioprotectant in heart diseases.  相似文献   

9.
《Cellular signalling》2014,26(9):1818-1824
Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48 h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4 h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4 h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48 h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells.  相似文献   

10.
Apoptosis of cardiomyocytes plays an important role in the development of cardiovascular diseases (CVD). Numerous studies have shown that generation of reactive oxygen species (ROS) induced by the renin-angiotensin system (RAS) is involved in this pathological process. Recent studies also suggested that acetylcholine (ACh) prevented the hypoxia-induced apoptosis of mouse ES cells by inhibiting the ROS production. However, whether ACh can inhibit the action of angiotensin II (Ang II) and subsequently prevent CVD development remains unclear. In this study, H9c2 cells were stimulated by 10−6 M Ang II for 24 h with or without 10−5 M ACh, 10−5 M ACh + 10−4 M atropine respectively. The results demonstrated that Ang II increased apoptosis index by fourfold (vs. the control group, P < 0.01), which were significantly diminished by ACh. However, the atropine (ACh receptor [AChR] inhibitor) treatment blocked the protective effect of ACh. Subsequently, Ang II significantly increases the expression and activity of NADPH oxidase so that ROS production is increased by sevenfold (vs. control group, P < 0.01). The activity and expression of caspase-3 along with the Bax/Bcl2 ratio and the levels of p38 mitogen activated protein kinase (MAPK) phosphorylation also appeared to follow a similar trend. Furthermore, we observed that ACh could reduce up-regulation of AT1 receptor expression induced by Ang II. However, all these effects of ACh were inhibited by atropine. In conclusion, ACh prevents Ang II-induced H9c2 cells apoptosis through down-regulation of the AT1 receptor and inhibition of ROS-mediated p38 MAPK activation as well as regulation of Bcl-2, Bax and caspase-3.  相似文献   

11.
On rate-controlling factors of long chain fatty acid oxidation   总被引:6,自引:0,他引:6  
  相似文献   

12.
Previous studies have shown that dietary copper deficiency causes cardiac hypertrophy and depression of vascular epithelial growth factor (VEGF) expression in mouse model. Copper replenishment in the diet reverses cardiac hypertrophy and restores VEGF expression. The present study was undertaken to specifically determine the role of VEGF in copper effect on cell hypertrophy. Embryonic rat cardiac H9c2 cells were exposed to hydrogen peroxide to develop hypertrophy, determined by increases in cell size and total protein content. Copper addition at 5 microM in cultures suppressed cell hypertrophy. In the presence of anti-VEGF antibody, copper inhibitory effect on cell hypertrophy was blunted, and VEGF alone mimicked the inhibitory effect of copper. The results thus demonstrated that VEGF is critically involved in copper inhibition of cell hypertrophy induced by hydrogen peroxide in the H9c2 cells.  相似文献   

13.
We examined the effect of etomoxir treatment on de novo cardiolipin (CL) biosynthesis in H9c2 cardiac myoblast cells. Etomoxir treatment did not affect the activities of the CL biosynthetic and remodeling enzymes but caused a reduction in [1-14C]palmitic acid or [1-14C]oleic acid incorporation into CL. The mechanism was a decrease in fatty acid flux through the de novo pathway of CL biosynthesis via a redirection of lipid synthesis toward 1,2-diacyl-sn-glycerol utilizing reactions mediated by a 35% increase (P < 0.05) in membrane phosphatidate phosphohydrolase activity. In contrast, etomoxir treatment increased [1,3-3H]glycerol incorporation into CL. The mechanism was a 33% increase (P < 0.05) in glycerol kinase activity, which produced an increased glycerol flux through the de novo pathway of CL biosynthesis. Etomoxir treatment inhibited 1,2-diacyl-sn-glycerol acyltransferase activity by 81% (P < 0.05), thereby channeling both glycerol and fatty acid away from 1,2,3-triacyl-sn-glycerol utilization toward phosphatidylcholine and phosphatidylethanolamine biosynthesis. In contrast, etomoxir inhibited myo-[3H]inositol incorporation into phosphatidylinositol and the mechanism was an inhibition in inositol uptake. Etomoxir did not affect [3H]serine uptake but resulted in an increased formation of phosphatidylethanolamine derived from phosphatidylserine. The results indicate that etomoxir treatment has diverse effects on de novo glycerolipid biosynthesis from various metabolic precursors. In addition, etomoxir mediates a distinct and differential metabolic channeling of glycerol and fatty acid precursors into CL.  相似文献   

14.
Recent evidence has shown that prolonged exposure to exogenous tissue factor (TF) can alter the cellular functions of cardiomyocytes resulting in cardiac dysfunction. The effect of TF may arise from local inflammation within or in the vicinity of the heart. The aim of this study was to investigate the effect of TF on cardiomyocyte proliferation and growth. H9c2 rat cardiomyocytes were exposed to a range of concentrations of recombinant TF (rTF) (1.3–52 ng/ml) for up to 10 days and the outcome on cell proliferation and induction of apoptosis measured. At lower concentrations examined (1.3 ng/ml), rTF had a proliferative influence on the H9c2 cells. In contrast, elevated concentrations of rTF (52 ng/ml) induced cellular apoptosis as indicated by increased caspase-3 activity and nuclear localisation of p53. Moreover, incubation with intermediate concentrations of rTF (13 ng/ml) resulted in an initial increase in proliferation but subsequently, led to cellular apoptosis by day 7 of the incubation. In order to determine if these effects induced hypertrophic cell growth, expression of mechano-growth factor (MGF) was analysed. Incubation of cells with rTF resulted in enhanced expression of MGF particularly at the intermediate concentrations of rTF (13 ng/ml) as well as mean cellular transverse diameter. In addition, there was a rapid increase in the expression of atrial natriuretic factor (ANF) in the cells, on incubation with rTF but diminished rapidly when exposed to higher concentrations of rTF. These data indicate that exposure to increasing concentrations of rTF can accelerate the rate of cardiomyocyte turnover which may ultimately lead to depletion of viable cells within the heart. Moreover, at lower concentrations of rTF, the induction of cell proliferation together with hypertrophic markers indicates that rTF may contribute to the induction and progression of cardiac hypertrophy.  相似文献   

15.
1. H2O2 formation associated with the metabolism of added fatty acids was quantitatively determined in isolated haemoglobin-free perfused rat liver (non-recirculating system) by two different methods. 2. Organ spectrophotometry of catalase Compound I [Sies & Chance (1970) FEBS Lett. 11, 172-176] was used to detect H2O2 formation (a) by steady-state titration with added hydrogen donor, methanol or (b) by comparison of fatty-acid responses with those of the calibration compound, urate. 3. In the use of the peroxidatic reaction of catalase, [14C]methanol was added as hydrogen donor at an optimal concentration of 1 mM in the presence of 0.2 mM-L-methionine, and 14CO2 production rates were determined. 4. Results obtained by the different methods were similar. 5. The yield of H2O2 formation, expressed as the rate of H2O2 formation in relation to the rate of fatty-acid supply, was less than 1.0 in all cases, indicating that, regardless of chain length, less than one acetyl unit was formed per mol of added fatty acid by the peroxisomal system. In particular, the standard substrate used with isolated peroxisomal preparations (C16:0 fatty acid) gave low yield (close to zero). Long-chain monounsaturated fatty acids exhibit a relatively high yield of H2O2 formation. 6. The hypolipidaemic agent bezafibrate led to slightly increased yields for most of the acids tested, but the yield with oleate was decreased to one-half the original yield. 7. It is concluded that in the intact isolated perfused rat liver the assayable capacity for peroxisomal beta-oxidation is used to only a minor degree. However, the observed rates of H2O2 production with fatty acids can account for a considerable share of the endogenous H2O2 production found in the intact animal.  相似文献   

16.
《Free radical research》2013,47(8):962-972
Abstract

Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases.  相似文献   

17.
Molecular and Cellular Biochemistry - Diabetes mellitus (DM)-induced cardiac morbidities have been the leading cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2...  相似文献   

18.
Adiponectin,an adipokine synthesized and secreted majorly by adipose tissue,is reported to exert cardioprotective properties via anti-inflammation and antiapoptosis.Lipopolysaccharide(LPS)is a common inflammation and apoptosis inducer of cardiomyocytes.However,few studies have reported the roles of adiponectin on LPS-induced inflammation as well as apoptosis of H9c2 cells,and the possible mechanisms of these effects.In the present study,we found that adiponectin significantly relieved LPS-induced cytotoxicity including decreased viability and elevated LDH release,inhibited LPS-triggered inflammation,which is evidenced by increases in release of TNF-α,IL-1β as well as IL-6,and attenuated the enhanced rates of apoptotic cells as well as increased caspase-3 activity caused by LPS in H9c2 cells.In addition,our data demonstrated that adiponectin upregulated AMP-activated protein kinase(AMPK)activation of H9c2 cells with or without LPS administration.Moreover,we found that blocking AMPK pathway by compound c attenuated the protective effects of adiponectin against the cytotoxicity,inflammatory response,and apoptosis of H9c2 cells resulted from LPS.Our observations bring novel insights for understanding the mediatory role of AMPK pathway implicated in the protective effects of adiponectin against LPS-induced cardiotoxicity.  相似文献   

19.
CaV1.2 and transient receptor potential canonical channel 3 (TRPC3) are two proteins known to have important roles in pathological cardiac hypertrophy; however, such roles still remain unclear. A better understanding of these roles is important for furthering the clinical understanding of heart failure. We previously reported that Trpc3-knockout (KO) mice are resistant to pathologic hypertrophy and that their CaV1.2 protein expression is reduced. In this study, we aimed to examine the relationship between these two proteins and characterize their role in neonatal cardiomyocytes. We measured CaV1.2 expression in the hearts of wild-type (WT) and Trpc3−/− mice, and examined the effects of Trpc3 knockdown and overexpression in the rat cell line H9c2. We also compared the hypertrophic responses of neonatal cardiomyocytes cultured from Trpc3−/− mice to a representative hypertrophy-causing drug, isoproterenol (ISO), and measured the activity of nuclear factor of activated T cells 3 (NFAT3) in neonatal cardiomyocytes (NCMCs). We inhibited the L-type current with nifedipine, and measured the intracellular calcium concentration using Fura-2 with 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ba2+ influx. When using the Trpc3-mediated Ca2+ influx, both intracellular calcium concentration and calcium influx were reduced in Trpc3-KO myocytes. Not only was the expression of CaV1.2 greatly reduced in Trpc3-KO cardiac lysate, but the size of the CaV1.2 currents in NCMCs was also greatly reduced. When NCMCs were treated with Trpc3 siRNA, it was confirmed that the expression of CaV1.2 and the intracellular nuclear transfer activity of NFAT decreased. In H9c2 cells, the ISO activated- and verapamil inhibited- Ca2+ influxes were dramatically attenuated by Trpc3 siRNA treatment. In addition, it was confirmed that both the expression of CaV1.2 and the size of H9c2 cells were regulated according to the expression and activation level of TRPC3. We found that after stimulation with ISO, cell hypertrophy occurred in WT myocytes, while the increase in size of Trpc3-KO myocytes was greatly reduced. These results suggest that not only the cell hypertrophy process in neonatal cardiac myocytes and H9c2 cells were regulated according to the expression level of CaV1.2, but also that the expression level of CaV1.2 was regulated by TRPC3 through the activation of NFAT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号