首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.  相似文献   

3.
Exosomes are typically involved in cellular communication and signaling. Macrophages play a key role in lipopolysaccharide (LPS)‐induced sepsis. However, the molecular comparison of exosomes derived from LPS‐induced macrophage has not been well analyzed. The macrophage‐exosomes are validated and the protein composition of those exosomes are investigated by isobaric tags for relative and absolute quantification (iTRAQ) mass spectrometry. A total of 5056 proteins are identified in macrophage‐exosomes. We discovered 341 increased proteins and 363 reduced proteins in LPS‐treated macrophage‐exosomes compared with control exosomes. In addition, gene ontology analysis demonstrates that macrophage‐exosomes proteins are mostly linked to cell, organelle, extracellular region, and membrane. The bioinformatics analysis also indicates that these proteins are mainly involved in cellular process, single‐organism process, metabolic process, and biological regulation. Among these 341 upregulated proteins, Kyoto Encyclopedia of Genes and Genomes analysis reveals that 22 proteins are involved in the NOD‐like receptor signaling pathway. Finally, hepatocytes can uptake macrophage‐exosomes and subsequently NLRP3 inflammasome is activated in vitro and in vivo. These data emphasize the fundamental importance of macrophage‐exosomes in sepsis‐induced liver injury. Therefore, the iTRAQ proteomic strategy brings new insights into macrophage‐derived exosomes. It may improve our understanding of macrophage‐exosomes’ functions and their possible use as therapeutic targets for sepsis.  相似文献   

4.
外泌体在细胞生理病理活动过程中起着重要的调控作用,研究外泌体的行为特性对于揭示生命活动及疾病发生发展的内在机理具有重要的基础意义.然而由于缺乏合适的观测手段及方法,目前对于活体状态下外泌体结构及特性的认知仍然很不足.原子力显微镜(AFM)的发明为研究溶液环境下天然状态生物样本提供了强大的技术工具,已成为生物学重要研究手...  相似文献   

5.
Exosomes are membrane-bound vesicles found in all biological fluids. AML patients'' plasma collected at diagnosis contains elevated exosome levels relative to normal donor (ND) plasma. The molecular profile of AML exosomes changes in the course of therapy and may serve as a measure of disease progression or response to therapy. However, plasma contains a mix of exosomes derived from various cell types. To be able to utilize blast-derived exosomes as biomarkers for AML, we have developed an immunoaffinity-based capture method utilizing magnetic microbeads coated with anti-CD34 antibody (Ab). This Ab is specific for CD34, a unique marker of AML blasts. The capture procedure was developed using CD34+ exosomes derived from Kasumi-1 AML cell culture supernatants. The capture capacity of CD34microbeads was shown to linearly correlate with the input exosomes. A 10 uL aliquot of CD34 microbeads was able to capture all of CD34+ exosomes present in 100–1,000 uL of AML plasma. The levels of immunocaptured CD34+ exosomes correlated with the percentages of CD34+ blasts in the AML patients'' peripheral blood. The immunocaptured exosomes had a typical cup-shaped morphology by transmission electron microscopy, and their molecular cargo was similar to that of parental blasts. These exosomes were biologically-active. Upon co-incubation with natural killer (NK) cells, captured blast-derived exosomes down-regulated surface NKG2D expression, while non-captured exosomes reduced expression levels of NKp46. Our data provide a proof-of-principle that blast-derived exosomes can be quantitatively recovered from AML patients'' plasma, their molecular profile recapitulates that of autologous blasts and they retain the ability to mediate immune suppression. These data suggest that immunocaptured blast-derived exosomes might be useful in diagnosis and/or prognosis of AML in the future.  相似文献   

6.
Exosome(胞外体)是一种可由多种细胞分泌的纳米级膜性小泡,直径为40~100 nm,其中含有细胞特异性的信号分子、蛋白质、m RNA和mi RNA。这些成分因为有脂质膜的保护而具有充分的生物学活性,可以在细胞与细胞之间进行信息传递,从而有效发挥对受体细胞的调节作用。本文综述了近几年关于exosomes的研究成果,从exosome的基本特征、生物学功能、exosomes介导的细胞通讯在中枢神经系统疾病发病机制及治疗潜能四个方面,对exosomes的研究现状作一介绍,旨在探讨exosomes在细胞通讯研究中所面临的问题,为以exosomes作为调节靶点治疗中枢神经系统疾病提供理论参考。  相似文献   

7.
8.
为了开发一种用于人体血浆中外泌体的高效快速提取和分离的新型微流控芯片,文中收集健康人体外周血液样本,自主设计并制备基于纳米多孔薄膜和琼脂糖凝胶电泳的微流芯片。提取的外泌体使用透射电镜、Nanosight和Western blotting等技术进行表征,鉴定并分析其形态、浓度和粒径分布。同时将超速离心法和微流芯片所提取的外泌体进行粒径和浓度的分析比较,探讨两种方法各自的提取效率。最后,利用RT-PCR技术分析外泌体中miRNA-21的相对表达量。凝胶电泳微流芯片可在1 h内快速的从血浆中高效率地提取出纯度高、大小完整、尺寸分布在30–200 nm之间的外泌体,满足后续下游分析的要求。通过与现有最普遍的超速离心法进行对比分析,当血浆样本量小于100μL时,凝胶电泳微流芯片提取外泌体的效率为超速离心法的3.80倍。凝胶电泳微流芯片提取外泌体的优化参数是:电场电压:100 V;琼脂糖凝胶浓度:1.0%;注射泵流速:0.1 mL/h。凝胶电泳微流芯片可快速高效地提取出外泌体,对外泌体与癌症生物标记物的相关研究具有潜在的巨大优势,也为基于外泌体的即时诊断技术提供了可能。  相似文献   

9.
外泌体是来源于细胞内吞噬作用的细胞外囊泡(extracellular vesicles,EVs),其含有特定的蛋白质、脂质、RNA和DNA,能将信号传递给受体细胞,从而介导细胞通讯过程。缺氧作为一种严重的细胞应激,是脑部疾病的重要特征,可以诱导外泌体的释放并影响其内容物。越来越多的证据显示,外泌体携带的生物活性物质可以反映其细胞起源和疾病状态,成为诊断或预测缺氧性疾病的潜在生物标志物。现对外泌体的一般特性和功能、缺氧条件下外泌体的分泌机制以及缺氧胁迫下正常神经细胞(例如神经元和星形胶质细胞)和胶质瘤细胞释放的外泌体的作用机制作一综述。  相似文献   

10.
WENTING WANG  ZIJIAN LI  JUAN FENG 《Cytotherapy》2018,20(10):1204-1219
In the past, exosomes have been thought of as cellular dust. Today, they are thought to be carriers of real biomarkers and intercellular biological information. The composition of exosomes differs according to their source, and the subsequent information they carry, such as protein, microRNA or mRNA, may also be different. Recent studies have demonstrated that exosomes in ischemic diseases can help to make an early diagnosis, and in cellular experiments and animal models, exosomes promote angiogenesis, restrain cell apoptosis and reduce inflammation, among other actions, to protect ischemic organs. There is evidence that these protective effects are related to microRNAs in exosomes. In this review, we discuss the use of exosomes for early diagnosis of ischemic diseases and recent advances in the therapeutic use of exosomes in cell and mammalian models of ischemic diseases.  相似文献   

11.
摘要 目的:研究胶质瘤来源外泌体中高迁移率族蛋白B1(HMGB1)对胶质瘤干细胞形成的影响及其意义。方法:使用外泌体提取试剂盒提取原代胶质母细胞瘤来源外泌体,通过透射电子显微镜、纳米粒度电位仪和Western blotting对外泌体进行鉴定;采用Western blotting检测外泌体中HMGB1的表达量;通过qRT-PCR、Western blotting、克隆球计数检测外泌体对胶质瘤干细胞形成的影响;siRNA敲低HMGB1的表达水平,并通过qRT-PCR、Western blotting、克隆球计数检测外泌体中HMGB1对胶质瘤干细胞形成的影响。结果:原代胶质瘤细胞可以分泌外泌体到肿瘤微环境并且外泌体中存在HMGB1;原代胶质瘤细胞来源外泌体可以上调邻近胶质瘤细胞干性相关分子CD133、OCT4、NANOG、SOX2的表达并促进干细胞克隆球的形成;通过siRNA敲低原代胶质瘤细胞HMGB1的表达后,外泌体中HMGB1的含量降低并且外泌体促进胶质瘤干细胞形成的作用减弱。结论:胶质瘤细胞来源外泌体可以通过HMGB1促进胶质瘤干细胞的形成。  相似文献   

12.
Exosomes released from different types of host cells have different biological effects. We report that exosomes released from retinal astroglial cells (RACs) suppress retinal vessel leakage and inhibit choroidal neovascularization (CNV) in a laser-induced CNV model, whereas exosomes released from retinal pigmental epithelium do not. RAC exosomes inhibit the migration of macrophages and the tubule forming of mouse retinal microvascular endothelial cells. Further, we analyzed antiangiogenic components in RAC exosomes using an angiogenesis array kit and detected several endogenous inhibitors of angiogenesis exclusively present in RAC exosomes, such as endostatin. Moreover, blockade of matrix metalloproteinases in the cleavage of collagen XVIII to form endostatin using FN-439 reverses RAC exosome-mediated retinal vessel leakage. This study demonstrates that exosomes released from retinal tissue cells have different angiogenic effects, with exosomes from RACs containing antiangiogenic components that might protect the eye from angiogenesis and maintain its functional integrity. In addition, by identifying additional components and their functions of RAC exosomes, we might improve the antiangiogenic therapy for CNV in age-related macular degeneration and diabetic retinopathy.  相似文献   

13.
Cardiovascular diseases (CVDs) are a major health problem worldwide, and health professionals are still actively seeking new and effective approaches for CVDs treatment. Presently, extracellular vesicles, particularly exosomes, have gained its popularity for CVDs treatment because of their function as messengers for inter‐ and extra‐cellular communications to promote cellular functions in cardiovascular system. However, as a newly developed field, researchers are still trying to fully understand the role of exosomes, and their mechanism in mediating cardiac repair process. Therefore, a comprehensive review of this topic can be timely and favourable. In this review, we summarized the basic biogenesis and characterization of exosomes and then further extended the focus on the circulating exosomes in cellular communication and stem cell‐derived exosomes in cardiac disease treatment. In addition, we covered interactions between the heart and other organs through exosomes, leading to the diagnostic characteristics of exosomes in CVDs. Future perspectives and limitations of exosomes in CVDs were also discussed with a special focus on exploring the potential delivery routes, targeting the injured tissue and engineering novel exosomes, as well as its potential as one novel target in the metabolism‐related puzzle.  相似文献   

14.
15.
Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.  相似文献   

16.
Exosomes are important mediators in cell‐to‐cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma‐specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro‐migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells’ aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.  相似文献   

17.

Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.

  相似文献   

18.
exosome及其在免疫耐受方面的作用   总被引:1,自引:0,他引:1  
赵丽华  范华骅 《生命科学》2007,19(2):174-178
exosome是多种活细胞晚期内体分泌的小囊泡体,不同来源的exosome的特异性功能与它所含的特异性蛋白质以及它所处的微环境密切相关。先前对exosome的研究大多集中在其诱导和增强机体的免疫应答功能,近年来,越来越多的研究表明exosome在特定的环境中也能下调免疫应答或诱导免疫耐受,尤其在诱导同种异体移植和自身免疫性疾病耐受中的作用被越来越多的人所关注。因此,exosome诱导的免疫耐受应用于多种疾病治疗将成为研究热点。本文着重从exosome的生物起源、生物学特性以及在诱导免疫耐受方面的研究进展进行综述。  相似文献   

19.
Exosomes are 30–100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.  相似文献   

20.
Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号