首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, endoplasmic reticulum (ER) stress responses have been suggested to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we first identified cysteine-rich with EGF-like domains 2 (CRELD2) as an ER stress-inducible gene by analyzing a microarray analysis of thapsigargin (Tg)-inducible genes in Neuro2a cells. CRELD2 mRNA is also shown to be immediately induced by treatment with the ER stress-inducing reagents tunicamycin and brefeldin A. In the genomic sequence of the mouse CRELD2 promoter, we found a typical ER stress responsible element (ERSE), which is well conserved among various species. Using a luciferase reporter analyses, we demonstrated that the ERSE in mouse CRELD2 is functional and responds to Tg and ATF6-overexpression. Each mutation of ATF6- or NF-Y-binding sites in the ERSE of the mouse CRELD2 promoter dramatically decreased both the basal activity and responsiveness toward the ER stress stimuli. Our study suggests that CRELD2 could be a novel mediator in regulating the onset and progression of various ER stress-associated diseases.  相似文献   

2.
The COPII vesicle coat protein promotes the formation of endoplasmic reticulum- (ER) derived transport vesicles that carry secretory proteins to the Golgi complex in Saccharomyces cerevisiae. This coat protein consists of Sar1p, the Sec23p protein complex containing Sec23p and Sec24p, and the Sec13p protein complex containing Sec13p and a novel 150-kDa protein, p150. Here, we report the cloning and characterization of the p150 gene. p150 is encoded by an essential gene. Depletion of this protein in vivo blocks the exit of secretory proteins from the ER and causes an elaboration of ER membranes, indicating that p150 is encoded by a SEC gene. Additionally, overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1. p150 is encoded by SEC31, a gene isolated in a genetic screen for mutations that accumulate unprocessed forms of the secretory protein alpha-factor. The sec31-1 mutation was mapped by gap repair, and sequence analysis revealed an alanine to valine change at position 1239, near the carboxyl terminus. Sec31p is a phosphoprotein and treatment of the Sec31p-containing fraction with alkaline phosphatase results in a 50-75% inhibition of transport vesicle formation activity in an ER membrane budding assay.  相似文献   

3.
Here we report the isolation and characterization of the cypB gene from Aspergillus niger. The cypB gene encodes a protein with a predicted molecular weight of 20.7 kDa, which shows a high degree of identity to the cyclophilin family of peptidyl prolyl cis-trans isomerases (PPIases) from other eukaryotes. The 5' untranslated region of cypB includes three sequences resembling UPREs (unfolded protein response elements). The expression of cypB is upregulated by tunicamycin and DTT, suggesting that at least one UPRE is functional. The CYPB protein also has a 23-amino acid sequence which serves to target the protein to the endoplasmic reticulum (ER), and the ER retention sequence HEEL. CYPB-(His)(6) was expressed in Escherichia coli; the purified protein is capable of isomerizing a substrate peptide in vitro. This is also the first report to show that C-terminal addition of the sequence HEEL is sufficient to ensure retention of the green fluorescent protein (GFP) within the ER.  相似文献   

4.
5.
Exit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII vesicles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here, we show that membrane association of COPII components, and in particular of Sec23a, is impaired by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein folding and COPII assembly at the ER.  相似文献   

6.
Recent evidence suggests a regulatory connection between cell volume, endoplasmic reticulum (ER) export, and stimulated Golgi-to-ER transport. To investigate the potential role of protein kinases we tested a panel of protein kinase inhibitors for their effect on these steps. One inhibitor, H89, an isoquinolinesulfonamide that is commonly used as a selective protein kinase A inhibitor, blocked both ER export and hypo-osmotic-, brefeldin A-, or nocodazole-induced Golgi-to-ER transport. In contrast, H89 did not block the constitutive ER Golgi-intermediate compartment (ERGIC)-to-ER and Golgi-to-ER traffic that underlies redistribution of ERGIC and Golgi proteins into the ER after ER export arrest. Surprisingly, other protein kinase A inhibitors, KT5720 and H8, as well as a set of protein kinase C inhibitors, had no effect on these transport processes. To test whether H89 might act at the level of either the coatomer protein (COP)I or the COPII coat protein complex we examined the localization of betaCOP and Sec13 in H89-treated cells. H89 treatment led to a rapid loss of Sec13-labeled ER export sites but betaCOP localization to the Golgi was unaffected. To further investigate the effect of H89 on COPII we developed a COPII recruitment assay with permeabilized cells and found that H89 potently inhibited binding of exogenous Sec13 to ER export sites. This block occurred in the presence of guanosine-5'-O-(3-thio)triphosphate, suggesting that Sec13 recruitment is inhibited at a step independent of the activation of the GTPase Sar1. These results identify a requirement for an H89-sensitive factor(s), potentially a novel protein kinase, in recruitment of COPII to ER export sites, as well as in stimulated but not constitutive Golgi-to-ER transport.  相似文献   

7.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

8.
J Wang  A S Lee    J H Ou 《Journal of virology》1991,65(9):5080-5083
At least two proteolytic events are involved in the biogenesis of hepatitis B virus e antigen. The first proteolytic event removes the signal peptide and results in the translocation of the precursor protein, P22, into the lumen of the endoplasmic reticulum (ER). The second proteolytic event removes the carboxy-terminal arginine-rich sequence of P22 and converts it to the 16-kDa hepatitis B virus e antigen end product. In contrast to the first proteolytic event, the second proteolytic event is suppressed by brefeldin A, a chemical that inhibits the transport of protein from the ER to the Golgi apparatus. In subcellular fractionation experiments, P22 was detected in both the ER and the Golgi fractions, but P16 was detected only in the Golgi fraction. On the basis of these results, we conclude that the conversion of P22 to P16 occurs ina post-ER compartment, mostly likely the Golgi apparatus.  相似文献   

9.
COPII vesicles bud from an ER domain known as the transitional ER (tER). Assembly of the COPII coat is initiated by the transmembrane guanine nucleotide exchange factor Sec12. In the budding yeast Pichia pastoris, Sec12 is concentrated at tER sites. Previously, we found that the tER localization of P. pastoris Sec12 requires a saturable binding partner. We now show that this binding partner is Sec16, a peripheral membrane protein that functions in ER export and tER organization. One line of evidence is that overexpression of Sec12 delocalizes Sec12 to the general ER, but simultaneous overexpression of Sec16 retains overexpressed Sec12 at tER sites. Additionally, when P. pastoris Sec12 is expressed in S. cerevisiae, the exogenous Sec12 localizes to the general ER, but when P. pastoris Sec16 is expressed in the same cells, the exogenous Sec12 is recruited to tER sites. In both of these experimental systems, the ability of Sec16 to recruit Sec12 to tER sites is abolished by deleting a C-terminal fragment of Sec16. Biochemical experiments confirm that this C-terminal fragment of Sec16 binds to the cytosolic domain of Sec12. Similarly, we demonstrate that human Sec12 is concentrated at tER sites, likely due to association with a C-terminal fragment of Sec16A. These results suggest that a Sec12-Sec16 interaction has a conserved role in ER export.  相似文献   

10.
Budding yeast Sec16 is a large peripheral endoplasmic reticulum (ER) membrane protein that functions in generating COPII transport vesicles and in clustering COPII components at transitional ER (tER) sites. Sec16 interacts with multiple COPII components. Although the COPII assembly pathway is evolutionarily conserved, Sec16 homologues have not been described in higher eukaryotes. Here, we show that mammalian cells contain two distinct Sec16 homologues: a large protein that we term Sec16L and a smaller protein that we term Sec16S. These proteins localize to tER sites, and an N-terminal region of each protein is necessary and sufficient for tER localization. The Sec16L and Sec16S genes are both expressed in every tissue examined, and both proteins are required in HeLa cells for ER export and for normal tER organization. Sec16L resembles yeast Sec16 in having a C-terminal conserved domain that interacts with the COPII coat protein Sec23, but Sec16S lacks such a C-terminal conserved domain. Immunoprecipitation data indicate that Sec16L and Sec16S are each present at multiple copies in a heteromeric complex. We infer that mammalian cells have preserved and extended the function of Sec16.  相似文献   

11.
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.  相似文献   

12.
The imbalance between the folding capacity and the folding demand imposed on the endoplasmic reticulum (ER) of therapeutic protein-producing host cells results in a stressed ER. This initiates a series of cellular signaling events termed the unfolded protein response (UPR) aimed at restoring homeostasis. In order to alleviate ER stress and ER stress-induced apoptosis in recombinant Chinese hamster ovary (rCHO) cells, silencing of the growth arrest and DNA damage 153 gene (GADD153), the main pro-apoptotic factor of UPR, was attempted. The rCHO cells were cultured under four ER stress inducing conditions, including thapsigargin, brefeldin A, glucose deprivation, glucose and glutamine deprivation. In these conditions, the functions of stably GADD153-silenced clones were investigated. It was found that under exclusive ER stress-inducing conditions of thapsigargin and brefeldin A treatments, the GADD153-silenced clones showed a less incidence of apoptosis (about 38%) and less cell viability (about 58% non-viable cells) than the control cells. However, under nutrient deprivation, the beneficial effect of GADD153 silencing was not pronounced because nutrient deprivation led to a cascade of various events including GADD153-induced cell death. GADD153-overexpressing pool cells also substantiated the findings of GADD153 downregulation. Investigation of the underlying mechanism revealed that increased GADD153 expression results in an exaggerated production of reactive oxygen species (ROS) and that GADD153 silencing promotes translational attenuation facilitating cell recovery from stress. Taken together, this study suggests that GADD153 sensitizes cells to ER stress through mechanisms that involve enhanced oxidative injury and by manipulating the ER client protein load in rCHO cells.  相似文献   

13.
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.  相似文献   

14.
15.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

16.
Coat protein complex II (COPII)-coated vesicles/carriers, which mediate export of proteins from the endoplasmic reticulum (ER), are formed at special ER subdomains in mammals, termed ER exit sites or transitional ER. The COPII coat consists of a small GTPase, Sar1, and two protein complexes, Sec23-Sec24 and Sec13-Sec31. Sec23-Sec24 and Sec13-Sec31 appear to constitute the inner and the outermost layers of the COPII coat, respectively. We previously isolated two mammalian proteins (p125 and p250) that bind to Sec23. p125 was found to be a mammalian-specific, phospholipase A(1)-like protein that participates in the organization of ER exit sites. Here we show that p250 is encoded by the KIAA0310 clone and has sequence similarity to yeast Sec16 protein. Although KIAA0310p was found to be localized at ER exit sites, subcellular fractionation revealed its predominant presence in the cytosol. Cytosolic KIAA0310p was recruited to ER membranes in a manner dependent on Sar1. Depletion of KIAA0310p mildly caused disorganization of ER exit sites and delayed protein transport from the ER, suggesting its implication in membrane traffic out of the ER. Overexpression of KIAA0310p affected ER exit sites in a manner different from that of p125. Binding experiments suggested that KIAA0310p interacts with both the inner and the outermost layer coat complexes, whereas p125 binds principally to the inner layer complex. Our results suggest that KIAA0310p, a mammalian homologue of yeast Sec16, builds up ER exit sites in cooperation with p125 and plays a role in membrane traffic from the ER.  相似文献   

17.
18.
The SEC20 gene product (Sec20p) is required for endoplasmic reticulum (ER) to Golgi transport in the yeast secretory pathway. We have cloned the SEC20 gene by complementation of the temperature sensitive phenotype of a sec20-1 strain. The DNA sequence predicts a 44 kDa protein with a single membrane-spanning region; Sec20p has an apparent molecular weight of 50 kDa and behaves as an integral membrane protein with carbohydrate modifications that appear to be O-linked. A striking feature of this protein is its C-terminal sequence, which consists of the tetrapeptide HDEL. This signal is known to be required for the retrieval of soluble ER proteins from early Golgi compartments, but has not previously been observed on a membrane protein. The HDEL sequence of Sec20p is not essential for viability but helps to maintain intracellular levels of the protein. Depletion of Sec20p from cells results in the accumulation of an extensive network of ER and clusters of small vesicles. We suggest a possible role for the SEC20 product in the targeting of transport vesicles to the Golgi apparatus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号