首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Intracellular L-aspartate-beta-decarboxylase of Pseudomonas sp. and Alcaligenes sp. was isolated, purified and characterized. The cells were destroyed by ultrasonic treatment; the enzymes were precipitated by ammonium sulfate fractionation, dialyzed and lyophylized using Biogel P-150. After gel electrophoresis homogeneous enzyme preparations were obtained. The activity of L-aspartate-beta-decarboxylase is rather high--up to 92.1 U/min/mg of protein and is maximal at pH 5.5 and at temperatures of 45-55 degrees C. The Km and Vmax values for the Pseudomonas sp. enzyme are 0.1 M and 0.33 mM/min, respectively: those for the Alcaligenes sp. enzyme are 0.15 M and 1.0 mM/min, respectively. The results of amino acid analysis suggest that the enzymes slightly differ from one another with regard to aspartic and glutamic acid, alanine, valine and isoleucine content. Immobilization of the enzymes on various carriers was performed.  相似文献   

4.
Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9   总被引:1,自引:0,他引:1  
Abstract The aerobic degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9 was studied. Intact cells of Pseudomonas sp. BN9 grown with 2,4-dihydroxybenzoate oxidized 2,4-dihydroxybenzoate but not salicylate. Cell-free extracts of Pseudomonas sp. BN9 converted 2,4-dihydroxybenzoate after the addition of NAD(P)H. A partially purified protein fraction converted 2,4-dihydroxybenzoate with NADH to 1,2,4-trihydroxybenzene. 1,2,4-Trihydroxybenzene was converted by a 1,2-dioxygenase to maleylpyruvate, which was reduced by a NADH-dependent enzyme to 3-oxoadipate. 2,4-Dihydroxybenzoate 1-monooxygenase, 1,2,4-trihydroxybenzene 1,2-dioxygenase and maleylpyruvate reductase were induced in Pseudomonas sp. BN9 after growth with 2,4-dihydroxybenzoate.  相似文献   

5.
6.
A novel amidase acting on (R,S)-piperazine-2-tert-butylcarboxamide was purified from Pseudomonas sp. MCI3434 and characterized. The enzyme acted R-stereoselectively on (R,S)-piperazine-2-tert-butylcarboxamide to yield (R)-piperazine-2-carboxylic acid, and was tentatively named R-amidase. The N-terminal amino acid sequence of the enzyme showed high sequence identity with that deduced from a gene named PA3598 encoding a hypothetical hydrolase in Pseudomonas aeruginosa PAO1. The gene encoding R-amidase was cloned from the genomic DNA of Pseudomonas sp. MCI3434 and sequenced. Analysis of 1332 bp of the genomic DNA revealed the presence of one open reading frame (ramA) which encodes the R-amidase. This enzyme, RamA, is composed of 274 amino acid residues (molecular mass, 30 128 Da), and the deduced amino acid sequence exhibits homology to a carbon-nitrogen hydrolase protein (PP3846) from Pseudomonas putida strain KT2440 (72.6% identity) and PA3598 protein from P. aeruginosa strain PAO1 (65.6% identity) and may be classified into a new subfamily in the carbon-nitrogen hydrolase family consisting of aliphatic amidase, beta-ureidopropionase, carbamylase, nitrilase, and so on. The amount of R-amidase in the supernatant of the sonicated cell-free extract of an Escherichia coli transformant overexpressing the ramA gene was about 30 000 times higher than that of Pseudomonas sp. MCI3434. The intact cells of the E. coli transformant could be used for the R-stereoselective hydrolysis of racemic piperazine-2-tert-butylcarboxamide. The recombinant enzyme was purified to electrophoretic homogeneity from cell-free extract of the E. coli transformant overexpressing the ramA gene. On gel-filtration chromatography, the enzyme appeared to be a monomer. It had maximal activity at 45 degrees C and pH 8.0, and was completely inactivated in the presence of p-chloromercuribenzoate, N-ethylmaleimide, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, or Pb2+. RamA had hydrolyzing activity toward the carboxamide compounds, in which amino or imino group is connected to beta- or gamma-carbon, such as beta-alaninamide, (R)-piperazine-2-carboxamide (R)-piperidine-3-carboxamide, D-glutaminamide and (R)-piperazine-2-tert-butylcarboxamide. The enzyme, however, did not act on the other amide substrates for the aliphatic amidase despite its sequence similarity to RamA.  相似文献   

7.
AIMS: To determine the combined effect of packaging film and temperature on the rate and type of end-products caused by the growth of two main contrasting prevailing organisms in air and 100% CO2, Pseudomonas sp. and Lactobacillus sp., respectively. METHODS AND RESULTS: Pseudomonas sp. and Lactobacillus sp. were inoculated individually on sterile meat fillets. The samples were packed in air or 100% CO2, using a high and a low permeable film, and stored at 0 and 10 degrees C. Pseudomonas sp. grew aerobically and in 100% CO2 using high permeable film at both storage temperatures, while film permeability significantly affected the growth of Lactobacillus sp. only at 10 degrees C. Enzymatic kits and HPLC and GC analysis were used to determine the chemical changes of the samples throughout storage. Pseudomonas sp. presented a greater rate of consumption of glucose and lactate than Lactobacillus sp. in samples stored aerobically or with high permeable film. Propanol-1 and two unidentified organic acids were present only in samples inoculated with Pseudomonas sp., while acetaldehyde, ethanol, diacetyl and acetoin were detected in samples inoculated with Lactobacillus sp. CONCLUSION: Since different microbial species and introduction of new packaging methods affect spoilage reactions of meat either qualitatively or quantitatively, a combination of several chemical indicators should be thoroughly investigated. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study provides information on how and when such potential indicators can be exploited for the benefit of the industry and consumer.  相似文献   

8.
A Spirillum sp. and a Pseudomonas sp. possessing crossing substrate saturation curves for L-lactate were isolated from fresh water by chemostat enrichment. Their Ks and mumax values for L-lactate were: Spirillum sp., 23 micrometer and 0.35 h-1, respectively; Pseudomonas sp., 91 micrometer and 0.64 h-1, respectively. Under L-lactate limitation, pseudomonas sp. outgrew Spirillum s. at dilution rates (D) above 0.29 h-1, but the converse occurred at lower D values. The advantage of Spirillum sp. increased with decreasing D until, at D = 0.05 h-1 (i.e. L-lactate concentration of approximately 1 micrometer), Pseudomonas sp. was eliminated from the culture essentially as a non-growing population. In Spirillum sp. the Km for L-lactate transport (5.8 micrometer) was threefold lower than in Pseudomonas sp. (20 micrometer); Spirillum sp. also possessed a higher Vmax for the transport of this substrate. The surface to volume ratio was higher in Spirillum sp. and increased more markedly than in Pseudomonas sp. in response to decreasing D. Thus, a more efficient scavenging capacity contributes to the advantage of Spirillum sp. at low concentrations of the carbon source. Although most of the enzymes of L-lactate catabolism were more active in Pseudomonas sp., NADH oxidase activity was about twice as high in Spirillum sp.; and, unlike Pseudomonas sp., the cytochrome c content of this bacterium increased markedly with decreasing D. A more active and/or more efficient respiratory chain may therefore also play a role in the advantage of Spirillum sp. The other factors which appear to be involved include a lower energy of maintenance of Spirillum sp. [0.016 g L-lactate (g cell dry wt)-1 h-1 compared with 0.066 in Pseudomonas sp.] and a lower minimal growth rate.  相似文献   

9.
Pseudomonas sp. strain P51 is able to use 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene as sole carbon and energy sources. Two gene clusters involved in the degradation of these compounds were identified on a catabolic plasmid, pP51, with a size of 110 kb by using hybridization. They were further characterized by cloning in Escherichia coli, Pseudomonas putida KT2442, and Alcaligenes eutrophus JMP222. Expression studies in these organisms showed that the upper-pathway genes (tcbA and tcbB) code for the conversion of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene to 3,4-dichlorocatechol and 3,4,6-trichlorocatechol, respectively, by means of a dioxygenase system and a dehydrogenase. The lower-pathway genes have the order tcbC-tcbD-tcbE and encode a catechol 1,2-dioxygenase II, a cycloisomerase II, and a hydrolase II, respectively. The combined action of these enzymes degrades 3,4-dichlorocatechol and 3,4,6-trichlorocatechol to a chloromaleylacetic acid. The release of one chlorine atom from 3,4-dichlorocatechol takes place during lactonization of 2,3-dichloromuconic acid.  相似文献   

10.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Metabolism of glyphosate in Pseudomonas sp. strain LBr.   总被引:2,自引:2,他引:0       下载免费PDF全文
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

13.
Analysis of one of the regions of catabolic plasmid pP51 which encode chlorobenzene metabolism of Pseudomonas sp. strain P51 revealed that the tcbA and tcbB genes for chlorobenzene dioxygenase and dehydrogenase are located on a transposable element, Tn5280. Tn5280 showed the features of a composite bacterial transposon with iso-insertion elements (IS1066 and IS1067) at each end of the transposon oriented in an inverted position. When a 12-kb HindIII fragment of pP51 containing Tn5280 was cloned in the suicide donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida KT2442, Tn5280 was found to transpose into the genome at random and in single copy. The insertion elements IS1066 and IS1067 differed in a single base apir located in the inner inverted repeat and were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and distantly related to IS630 of Shigella sonnei. The presence of the catabolic genes tcbA and tcbB on Tn5280 suggests a mechanism by which gene clusters can be mobilized as gene cassettes and joined with others to form novel catabolic pathways.  相似文献   

14.
The nonfluorescent Pseudomonas sp. strain 92 requires the presence of a supplementary carbon source for growth on octopine, whereas the spontaneous mutant RB100 has acquired the capacity to utilize this opine as the sole carbon and nitrogen source. Insertional mutagenesis of RB100 with transposon Tn5 generated mutants which were unable to grow on octopine and others which grew slowly on this substrate. Both types of mutants yielded revertants that had regained the ability to utilize octopine. Some of the revertants had lost the transposon, whereas in others the transposon was retained but with rearrangements of the insertion site. Genes of octopine catabolism from strain 92 were cloned on a cosmid vector to generate pK3. The clone pK3 conferred the ability to utilize octopine as the sole carbon and nitrogen source on the host Pseudomonas putida KT2440. Although they conferred an equivalent growth phenotype, the mutant genes carried by RB100 and the cloned genes on pK3 differed in their regulation. Utilization of [14C]octopine was inducible by octopine in RB100 and was constitutive in KT2440(pK3).  相似文献   

15.
Metabolism of glyphosate in Pseudomonas sp. strain LBr   总被引:1,自引:0,他引:1  
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

16.
The degradation of 4-chlorobenzoate (4-CBA) by Pseudomonas sp. strain CBS3 is thought to proceed first by the dehalogenation of 4-CBA to 4-hydroxybenzoate (4-HBA), which is then metabolized following the protocatechuate branch of the beta-ketoadipate pathway. The cloning of the 4-CBA dehalogenation system was carried out by constructing a gene bank of Pseudomonas sp. strain CBS3 in Pseudomonas putida. Hybrid plasmid pPSA843 contains a 9.5-kilobase-pair fragment derived from the chromosome of Pseudomonas sp. strain CBS3. This plasmid confers on P. putida the ability to dehalogenate 4-CBA and grow on 4-CBA as the only source of carbon. However, pPSA843 did not complement mutants of P. putida unable to grow on 4-HBA (POB-), showing that the genes involved in the metabolism of 4-HBA were not cloned. Subcloning of Pseudomonas sp. strain CBS3 genes revealed that most of the insert is required for the dehalogenation of 4-CBA, suggesting that more than one gene product is involved in this dehalogenation.  相似文献   

17.
Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of bacteria-degrading bacteria were isolated from longterm petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa W3 were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.  相似文献   

18.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

19.
The kinetics of simultaneous mineralization of p-nitrophenol (PNP) and glucose by Pseudomonas sp. were evaluated by nonlinear regression analysis. Pseudomonas sp. did not mineralize PNP at a concentration of 10 ng/ml but metabolized it at concentrations of 50 ng/ml or higher. The Ks value for PNP mineralization by Pseudomonas sp. was 1.1 micrograms/ml, whereas the Ks values for phenol and glucose mineralization were 0.10 and 0.25 micrograms/ml, respectively. The addition of glucose to the media did not enable Pseudomonas sp. to mineralize 10 ng of PNP per ml but did enhance the degradation of higher concentrations of PNP. This enhanced degradation resulted from the simultaneous use of glucose and PNP and the increased rate of growth of Pseudomonas sp. on glucose. The Monod equation and a dual-substrate model fit these data equally well. The dual-substrate model was used to analyze the data because the theoretical assumptions of the Monod equation were not met. Phenol inhibited PNP mineralization and changed the kinetics of PNP mineralization so that the pattern appeared to reflect growth, when in fact growth was not occurring. Thus, the fitting of models to substrate depletion curves may lead to erroneous interpretations of data if the effects of second substrates on population dynamics are not considered.  相似文献   

20.
Under anoxic conditions Pseudomonas sp. strain JLR11 can use 2,4, 6-trinitrotoluene (TNT) as the sole N source, releasing nitrite from the aromatic ring and subsequently reducing it to ammonium and incorporating it into C skeletons. This study shows that TNT can also be used as a terminal electron acceptor in respiratory chains under anoxic conditions by Pseudomonas sp. strain JLR11. TNT-dependent proton translocation coupled to the reduction of TNT to aminonitrotoluenes has been observed in TNT-grown cells. This extrusion did not occur in nitrate-grown cells or in anaerobic TNT-grown cells treated with cyanide, a respiratory chain inhibitor. We have shown that in a membrane fraction prepared from Pseudomonas sp. strain JLR11 grown on TNT under anaerobic conditions, the synthesis of ATP was coupled to the oxidation of molecular hydrogen and to the reduction of TNT. This phosphorylation was uncoupled by gramicidin. Respiration by Pseudomonas sp. strain JLR11 is potentially useful for the biotreatment of TNT in polluted waters and soils, particularly in phytorhizoremediation, in which bacterial cells are transported to the deepest root zones, which are poor in oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号