首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis.  相似文献   

2.
Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS enhanced the expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function.  相似文献   

3.
Primary glioblastomas (GBMs) commonly overexpress the oncogene epidermal growth factor receptor (EGFR), which leads to increased Ras activity. FTA, a novel Ras inhibitor, produced both time- and dose-dependent caspase-mediated apoptosis in GBM cell lines. EGFR-mediated increase in 3H-thymidine uptake was inhibited by FTA. FACS analysis was performed to determine the percent of apoptotic cells. The sub-Go population of GBM cells was increased from 4.5 to 13.8% (control) to over 45-53.6% in FTA-treated cells within 24 h. Furthermore, FTA also increased the activities of both caspase-3 and -9, and PARP cleavage. Treatment of GBMs with FTA before or after EGF addition to the cultures blocked phosphorylation of Akt and mitogen-activated protein kinases (MAPK). FTA also significantly reduced the amount of EGF-induced Ras-GTP as reflected by a decrease in the level of Ras bound to Raf-RBD-GST. This study demonstrates that inhibition of Ras methylation may provide a therapeutic target for the treatment of GBMs overexpressing EGFR.  相似文献   

4.
The present study is on the growth inhibitory effect of Withania somnifera methanolic leaf extract and its active component, withanolide on HL-60 promyelocytic leukemia cells. The decrease in survival rate of HL-60 cells was noted to be associated with a time dependent decrease in the Bcl-2/Bax ratio, leading to up regulation of Bax. Both the crude leaf extract and the active component activated the apoptotic cascade through the cytochrome c release from mitochondria. The activation of caspase 9, caspase 8 and caspase 3 revealed that caspase was a key mediator in the apoptotic pathway. DNA fragmentation analysis revealed typical ladders as early as 12h indicative of caspase 3 role in the apoptotic pathway. Flow cytometry data demonstrated an increase of sub-G1 peak upon treatment by 51% at 24h, suggesting the induction of apoptotic cell death in HL-60 cells.  相似文献   

5.
BackgroundBladder cancer (BC) is a very common type of malignant cancer in men and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that Rhopaloic acid A (RA), a compound isolated from marine sponges, fights cancer but its potential anti-tumor effect on BC is still unknown.PurposeThe present study was aimed to explore the potential anti-tumor effects of RA against human BC cells and the underlying molecular mechanism.MethodsCell cytotoxicity was determined using the MTT and colony formation assays. Cell cycle distribution, apoptosis induction and generation of mitochondrial reactive oxygen species (ROS) were analyzed by flow cytometry. Mitochondrial membrane potential, acridine orange staining and intracellular ROS levels were observed using fluorescence microscopy. Levels of various signaling proteins were assessed using Western blotting. Furthermore, a zebrafish BC xenotransplantation model was used to confirm the anti-tumor effect of RA in vivo.ResultsTreatment with RA significantly suppressed the proliferation of BC cells that resulted from G2/M cycle arrest. Additionally, RA induced mitochondrial-mediated apoptosis and autophagy in BC cells. The death of BC cells induced by RA was rescued by treatment with inhibitors of apoptosis (Z-VAD-FMA) or autophagy (3-MA). RA activated the MAPK pathway and increased the production of cellular and mitochondrial ROS. Treatment with the ROS scavenger N-acetyl cysteine, effectively reversed the induction of apoptosis, autophagy, JNK activation and DNA damage elicited by RA. Finally, RA significantly inhibited tumor growth in a zebrafish BC xenotransplantation model.ConclusionTaken together, our findings indicate that RA induces apoptosis and autophagy and activates the MAPK pathway through ROS-mediated signaling in human BC cells. This RA-induced pathway offers insights into the molecular mechanism of its antitumor effect and shows that RA is a promising candidate for the treatment of BC.  相似文献   

6.

Background

Endophytes have proven to be an invaluable resource of chemically diverse secondary metabolites that act as excellent lead compounds for anticancer drug discovery. Here we report the promising cytotoxic effects of Cladosporol A (HPLC purified >98%) isolated from endophytic fungus Cladosporium cladosporioides collected from Datura innoxia. Cladosporol A was subjected to in vitro cytotoxicity assay against NCI60 panel of human cancer cells using MTT assay. We further investigated the molecular mechanism(s) of Cladosporol A induced cell death in human breast (MCF-7) cancer cells. Mechanistically early events of cell death were studied using DAPI, Annexin V-FITC staining assay. Furthermore, immunofluorescence studies were carried to see the involvement of intrinsic pathway leading to mitochondrial dysfunction, cytochrome c release, Bax/Bcl-2 regulation and flowcytometrically measured membrane potential loss of mitochondria in human breast (MCF-7) cancer cells after Cladosporol A treatment. The interplay between apoptosis and autophagy was studied by microtubule dynamics, expression of pro-apoptotic protein p21 and autophagic markers monodansylcadaverine staining and LC3b expression.

Results

Among NCI60 human cancer cell line panel Cladosporol A showed least IC50 value against human breast (MCF-7) cancer cells. The early events of apoptosis were characterized by phosphatidylserine exposure. It disrupts microtubule dynamics and also induces expression of pro-apoptotic protein p21. Moreover treatment of Cladosporol A significantly induced MMP loss, release of cytochrome c, Bcl-2 down regulation, Bax upregulation as well as increased monodansylcadaverine (MDC) staining and leads to LC3-I to LC3-II conversion.

Conclusion

Our experimental data suggests that Cladosporol A depolymerize microtubules, sensitize programmed cell death via ROS mediated autophagic flux leading to mitophagic cell death.

Graphical abstract

The proposed mechanism of Cladosporol A -triggered apoptotic as well as autophagic death of human breast cancer (MCF-7) cells. The figure shows that Cladosporol A induced apoptosis through ROS mediated mitochondrial pathway and increased p21 protein expression in MCF-7 cells in vitro.
  相似文献   

7.
BackgroundThe 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown.PurposeThe present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro.MethodsEvaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting.Results3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS.ConclusionROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.  相似文献   

8.
Severe side effects and complications such as gastrointestinal and hematological toxicities because of current anticancer drugs are major problems in the clinical management of gastric cancer, which highlights the urgent need for novel effective and less toxic therapeutic approaches. Hispolon, an active polyphenol compound, is known to possess potent antineoplastic and antiviral properties. In this study, we investigated the efficacy of hispolon in human gastric cancer cells and explored the cell death mechanism. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells. The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione antioxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer. These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anticancer agents.  相似文献   

9.
Ginkgetin is a natural biflavonoid isolated from leaves of Ginkgo biloba L. Though it was known to have anti-inflammatory, anti-influenza virus, anti-fungal activity, osteoblast differentiation stimulating activity and neuro-protective effects, the underlying antitumor mechanism of ginkgetin still remains unclear. Thus, in the present study, anti-cancer mechanism of ginkgetin was elucidated in human prostate cancer PC-3 cells. Ginkgetin suppressed the viability of PC-3 cells in a concentration-dependent manner and also significantly increased the sub-G1 DNA contents of cell cycle in PC-3 cells. Ginkgetin activated caspase-3 and attenuated the expression of survival genes such as Bcl-2, Bcl-xL, survivin and Cyclin D1 at protein and mRNA levels. Consistently, pan-caspase inhibitor Z-DEVD-fmk blocked sub G1 accumulation and cleavages of PRAP and caspase 3 induced by ginkgetin in PC-3 cells. Overall, these findings suggest that ginkgetin induces apoptosis in PC-3 cells via activation of caspase 3 and inhibition of survival genes as a potent chemotherapeutic agent for prostate cancer treatment.  相似文献   

10.
Chrysin is a natural, biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammation, anti-cancer, and anti-oxidation properties. The mechanism by which chrysin initiates apoptosis remains poorly understood. In the present report, we investigated the effect of chrysin on the apoptotic pathway in U937 human promonocytic cells. We show that chrysin induces apoptosis in association with the activation of caspase 3 and that Akt signal pathway plays a crucial role in chrysin-induced apoptosis in U937 cells. Furthermore, we have shown that inhibition of Akt phosphorylation in U937 cells by the specific PI3K inhibitor, LY294002 significantly, enhanced apoptosis. Overexpression of a constitutively active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase 3, and PLC-gamma1 cleavage by chrysin. Together, these findings suggest that the Akt pathway plays a major role in regulating the apoptotic response of human leukemia cells to chrysin and raise the possibility that combined interruption of chrysin and PI3K/Akt-related pathways may represent a novel therapeutic strategy in hematological malignancies.  相似文献   

11.
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2/M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.  相似文献   

12.
13.
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase 3 activation, which is required for apoptosis as confirmed using the pan-caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role for caspase 8 in curcumin-induced caspase 3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase 3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation, both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of pro-apoptotic proteins, such as Bax, Bak, Bid and Bim. Cross-linking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid and Bim causes Bax channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation and apoptosis. Importantly, p21 deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement for p21 in Apaf-1-dependent caspase activation and apoptosis. Together, our findings identify Apaf-1, Bax and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.Key words: curcumin, mitochondria, cytochrome c, Apaf-1, caspase, p21  相似文献   

14.
Pramanicin is a novel anti-fungal drug with a wide range of potential application against human diseases. It has been previously shown that pramanicin induces cell death and increases calcium levels in vascular endothelial cells. In the present study, we showed that pramanicin induced apoptosis in Jurkat T leukemia cells in a dose- and time-dependent manner. Our data reveal that pramanicin induced the release of cytochrome c and caspase-9 and caspase-3 activation, as evidenced by detection of active caspase fragments and fluorometric caspase assays. Pramanicin also activated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinases (ERK 1/2) with different time and dose kinetics. Treatment of cells with specific MAP kinase and caspase inhibitors further confirmed the mechanistic involvement of these signalling cascades in pramanicin-induced apoptosis. JNK and p38 pathways acted as pro-apoptotic signalling pathways in pramanicin-induced apoptosis, in which they regulated release of cytochrome c and caspase activation. In contrast the ERK 1/2 pathway exerted a protective effect through inhibition of cytochrome c leakage from mitochondria and caspase activation, which were only observed when lower concentrations of pramanicin were used as apoptosis-inducing agent and which were masked by the intense apoptosis induction by higher concentrations of pramanicin. These results suggest pramanicin as a potential apoptosis-inducing small molecule, which acts through a well-defined JNK- and p38-dependent apoptosis signalling pathway in Jurkat T leukemia cells.  相似文献   

15.
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase-3 activation, which is required for apoptosis as confirmed using the pan caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role of caspase-8 in curcumin-induced caspase-3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase-3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of proapoptotic proteins such as Bax, Bak, Bid, and Bim. Crosslinking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid, and Bim causes Bax-channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation, and apoptosis. Importantly, p21-deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement of p21 in Apaf-1 dependent caspase activation and apoptosis. Together, our findings demonstrate that Apaf-1, Bax, and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.  相似文献   

16.
Dryofragin is a phloroglucinol derivative extracted from Dryopteris fragrans (L.) Schott. In this study, the anticancer activity of dryofragin on human breast cancer MCF-7 cells was investigated. Dryofragin inhibited the growth of MCF-7 cells in a time and concentration-dependent manner. The cell viability was measured using MTT assay. After treatment with dryofragin for 72, 48 and 24h, the IC(50) values were 27.26, 37.51 and 76.10μM, respectively. Further analyses of DNA fragmentation and Annexin V-PI double-labeling indicated an induction of apoptosis. Dryofragin-treatment MCF-7 cells had a significantly accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. These phenomena were blocked by pretreatment for 2h of MCF-7 cells with the antioxidant compound N-acetyl-l-cysteine (NAC, 5mM). These results speak for the involvement of a ROS-mediated mitochondria-dependent pathway in dryofragin-induced apoptosis. Western blot results showed that dryofragin inhibited Bcl-2 and induced Bax expression which led to an activation of caspases-9 and -3 in the cytosol, and further cleavage of poly ADP-ribose polymerase (PARP) in the nucleus, then induced cell apoptosis. In conclusion, the present study provides evidence that dryofragin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.  相似文献   

17.
The 1,1-bisphosphonate ester family member apomine (SR-45023A) is known to have anti-tumour activity in various cancer cell types. The aims of this study were to determine the effect of apomine on the growth of two breast cancer cell lines, MCF-7 and MDA-MB-231, to ascertain whether any growth inhibitory effects found were due to induction of apoptosis, and to investigate the mechanism of action of apomine. Apomine caused significant growth inhibition of both cell lines after 72h of treatment. Apomine-induced growth inhibition was associated with caspase and p38 MAPK activation and DNA fragmentation. Apomine had no effect on Ras localisation, nor did addition of mevalonate to treatment media prevent apomine-induced apoptosis. We conclude that apomine induces apoptosis in breast cancer cells, an effect that is independent of oestrogen receptor status and is not via inhibition of the mevalonate pathway. Our study suggests apomine is a potential anti-neoplastic drug in breast cancer treatment.  相似文献   

18.
Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-l-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.  相似文献   

19.
Emerging evidence suggests that selenium has chemotherapeutic potential by inducing cancer cell apoptosis with minimal side effects to normal cells. However, the mechanism by which selenium induces apoptosis is not well understood. We have investigated the role of Bax, a Bcl-2 family protein and a critical regulator of the mitochondrial apoptotic pathway, in selenite-induced apoptosis in colorectal cancer cells. We found that supranutritional doses of selenite could induce typical apoptosis in colorectal cancer cells in vitro and in xenograft tumors. Selenite triggers a conformational change in Bax, as detected by the 6A7 antibody, and leads to Bax translocation into the mitochondria, where Bax forms oligomers to mediate cytochrome c release. Importantly, we show that the two conserved cysteine residues of Bax seem to be critical for sensing the intracellular ROS to initiate Bax conformational changes and subsequent apoptosis. Our results show for the first time that selenite can activate the apoptotic machinery through redox-dependent activation of Bax and further suggest that selenite could be useful in cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号