首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

2.
Our previous studies have shown that parathyroid hormone (PTH) stimulates phosphatidylcholine (PC) hydrolysis by phospholipase D (PLD) and transphosphatidylation in UMR-106 osteoblastic cells. To determine whether phospholipase C (PLC) is also involved in the PTH-mediated PC hydrolysis, we used the inhibitor, tricyclodecan-9-yl xanthogenate (D609), a putatively selective antagonist of this pathway. Consistent with this proposed mechanism, D609 decreased (3)H-phosphocholine in extracts from UMR-106 cells prelabeled with (3)H-choline. Unexpectedly, D609 enhanced PC hydrolysis and transphosphatidylation, suggesting that either there was a compensatory increase in PLD activity when PLC was inhibited, or that D609 directly increased PLD activity. The D609-stimulated increase in PC hydrolysis was rapid, being seen as early as 2 min. The effect of D609 was temperature-sensitive, consistent with an enzymatic mechanism. The D609-stimulated increase in PC hydrolysis was PKC-independent, based upon the lack of effect of down-regulation of PKC by phorbol 12,13-dibutyrate on the response. The studies reveal a novel action of this inhibitor on signaling in osteoblastic cells which might influence downstream responses.  相似文献   

3.
As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.25 microM for the cPLA2 purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a Ca2+- ionophore A23187-stimulated MDCK cells. In the AA release experiment, IC50 of D609 was approximately 375 microM, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of cPLA2.  相似文献   

4.
STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) was synthesized, and its inhibitory properties were investigated both in vitro and in vivo. STO-609 inhibits the activities of recombinant CaM-KK alpha and CaM-KK beta isoforms, with K(i) values of 80 and 15 ng/ml, respectively, and also inhibits their autophosphorylation activities. Comparison of the inhibitory potency of the compound against various protein kinases revealed that STO-609 is highly selective for CaM-KK without any significant effect on the downstream CaM kinases (CaM-KI and -IV), and the IC(50) value of the compound against CaM-KII is approximately 10 microg/ml. STO-609 inhibits constitutively active CaM-KK alpha (glutathione S-transferase (GST)-CaM-KK-(84-434)) as well as the wild-type enzyme. Kinetic analysis indicates that the compound is a competitive inhibitor of ATP. In transfected HeLa cells, STO-609 suppresses the Ca(2+)-induced activation of CaM-KIV in a dose-dependent manner. In agreement with this observation, the inhibitor significantly reduces the endogenous activity of CaM-KK in SH-SY5Y neuroblastoma cells at a concentration of 1 microg/ml (approximately 80% inhibitory rate). Taken together, these results indicate that STO-609 is a selective and cell-permeable inhibitor of CaM-KK and that it may be a useful tool for evaluating the physiological significance of the CaM-KK-mediated pathway in vivo as well as in vitro.  相似文献   

5.
We recently developed STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK), and we demonstrated that CaM-KK beta is more sensitive to STO-609 than the CaM-KK alpha isoform (Tokumitsu H., Inuzuka H., Ishikawa Y., Ikeda M., Saji I., and Kobayashi R. (2002) J. Biol. Chem. 277, 15813-15818). By using catalytic chimera and point mutants of both isoforms, we demonstrated that Val(269) in CaM-KK beta/Leu(233) in CaM-KK alpha confers a distinct sensitivity ( approximately 10-fold) to STO-609 on CaM-KK isoforms. Various mutations of Val(269) in CaM-KK beta indicate that substitution by hydrophobic residues with bulky side chains significantly decreases drug sensitivity and that the V269F mutant is the most effective drug-resistant enzyme ( approximately 80-fold higher IC(50) value). These findings are consistent with a result obtained with a full-length mutant expressed in COS-7 cells. Furthermore, suppression of CaM-KK-mediated CaM-KIV activation in transfected HeLa cells by STO-609 treatment was completely abolished by the co-expression of the CaM-KK beta V269F mutant. Based on the results that the distinct sensitivity of CaM-KK isoforms to STO-609 is because of a single amino acid substitution (Val/Leu) in the ATP-binding pocket, we have generated an STO-609-resistant CaM-KK mutant, which might be useful for validating the pharmacological effects and specificity of STO-609 in vivo.  相似文献   

6.
Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC(1) astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G(1) phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206-217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.  相似文献   

7.
8.
Tricyclodecan-9-yl-xanthogenate (D609) has in vivo and in vitro antioxidant properties. D609 mimics glutathione (GSH) and has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies have also shown that D609 protects brain in vivo and neuronal cultures in vitro against the potential Alzheimer's disease (AD) causative factor, Abeta(1-42)-induced oxidative stress and cytotoxicity. Mitochondria are important organelles with both pro- and antiapoptotic factor proteins. The present study was undertaken to test the hypothesis that intraperitoneal injection of D609 would provide neuroprotection against free radical-induced, mitochondria-mediated apoptosis in vitro. Brain mitochondria were isolated from gerbils 1 h post injection intraperitoneally (ip) with D609 and subsequently treated in vitro with the oxidants Fe(2+)/H(2)O(2) (hydroxyl free radicals), 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH, alkoxyl and peroxyl free radicals), and AD-relevant amyloid beta-peptide 1-42 [Abeta(1-42)]. Brain mitochondria isolated from the gerbils previously injected ip with D609 and subjected to these oxidative stress inducers, in vitro, showed significant reduction in levels of protein carbonyls, protein-bound hydroxynonenal [a lipid peroxidation product], 3-nitrotyrosine, and cytochrome c release compared to oxidant-treated brain mitochondria isolated from saline-injected gerbils. D609 treatment significantly maintains the GSH/GSSG ratio in oxidant-treated mitochondria. Increased activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in brain isolated from D609-injected gerbils is consistent with the notion that D609 acts like GSH. These antiapoptotic findings are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders, including AD.  相似文献   

9.
The alpha chain of the platelet von Willebrand factor receptor, glycoprotein (GP) Ib, is not known to be phosphorylated. Here, we report that the cytoplasmic domain of GPIbalpha is phosphorylated at Ser(609); this was detected by immunoblotting with an anti-phosphopeptide antibody, anti-pS609, that specifically recognizes the GPIbalpha C-terminal sequence S(606)GHSL(610) only when Ser(609) is phosphorylated. Immunoabsorption with anti-pS609 removed almost all of the GPIbalpha from platelet lysates, indicating a high proportion of GPIbalpha phosphorylation. Anti-pS609 inhibited GPIb-IX binding to the intracellular signaling molecule, 14-3-3zeta. Dephosphorylation of GPIb-IX with potato acid phosphatase inhibited anti-pS609 binding and also 14-3-3zeta binding. A synthetic phosphopeptide corresponding to the GPIbalpha C-terminal sequence (SIRYSGHpSL), but not a nonphosphorylated identical peptide, abolished GPIb-IX binding to 14-3-3zeta. Thus, phosphorylation at Ser(609) of GPIbalpha is important for 14-3-3zeta binding to GPIb-IX. In certain regions of spreading platelets, particularly at the periphery, there was a reduction in GPIbalpha staining by anti-pS609 as observed under a confocal microscope, indicating that a subpopulation of GPIbalpha molecules in these regions is dephosphorylated. These data suggest that phosphorylation and dephosphorylation at Ser(609) of GPIbalpha regulates GPIb-IX interaction with 14-3-3 and may play important roles in the process of platelet adhesion and spreading.  相似文献   

10.
Tricyclodecan-9-yl-xanthogenate (D609) is a selective tumor cytotoxic agent. However, the mechanisms of action of D609 against tumor cells have not been well established. Using U937 human monocytic leukemia cells, we examined the ability of D609 to inhibit sphingomyelin synthase (SMS), since inhibition of SMS may contribute to D609-induced tumor cell cytotoxicity via modulating the cellular levels of ceramide and diacylglycerol (DAG). The results showed that D609 is capable of inducing U937 cell death by apoptosis in a dose- and time-dependent manner. The induction of U937 cell apoptosis was associated with an inhibition of SMS activity and a significant increase in the intracellular level of ceramide and decrease in that of sphingomyelin (SM) and DAG, which resulted in an elevation of the ratio between ceramide and DAG favoring the induction of apoptosis. In addition, incubation of U937 cells with C(6)-ceramide and/or H7 (a selective PKC inhibitor) reduced U937 cell viability; whereas pretreatment of the cells with a PKC activator, PMA or 1-oleoyl-2-acetylglycerol (OAG), attenuated D609-induced U937 cell apoptosis. These results suggest that SMS is a potential target of D609 and inhibition of SMS may contribute to D609-induced tumor cell death via modulation of the cellular levels of ceramide and DAG.  相似文献   

11.
In the previous research, we found that D609 (tricyclodecan-9-yl-xanthogenate) could induce human marrow stromal cell (hMSC) differentiation to neuron-like cells. In this study, to understand the possible mechanism, we sequentially investigated the changes of phosphatidylcholine-specific phospholipase C (PC-PLC) activity, the expression of Rb, the intracellular reactive oxygen species (ROS) levels, NADPH oxidase and superoxide dismutase (SOD) activities when D609 induced neuronal differentiation in rat mesenchymal stem cells (MSCs). The results showed that D609 obviously inhibited the activity of PC-PLC when it induced neuronal differentiation in rat MSCs. Simultaneously, ROS level and the activity of NADPH oxidase increased significantly, but the MnSOD and Cu/ZnSOD activities were not altered. Furthermore, the level of Rb protein was evidently elevated. Our data suggested that PC-PLC mediated neuronal differentiation of rat MSCs by elevating NADPH oxidase activity, ROS level, and up-regulating the expression of Rb protein.  相似文献   

12.
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1α and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).  相似文献   

13.
D609 (tricyclodecan-9-yl-xanthogenate) is a phosphatidylcholine-specific phospholipase C inhibitor that also has been reported to protect rodents against oxidative damage caused by lethal doses of ionizing radiation. We previously showed that D609 mimics glutathione. D609 has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies from our laboratory have also shown that D609 reduces the Alzheimer amyloid beta-peptide (1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture. The present study was undertaken to test the hypothesis that D609 would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes isolated from gerbils, previously injected intraperitoneally (ip) with D609, were treated with the oxidants Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH), which produce free radicals. Synaptosomes isolated from the gerbils ip injected with D609 and treated with Fe2+/H2O2 or AAPH showed significant reduction in reactive oxygen species, levels of protein carbonyl, protein-bound hydroxynonenal (a lipid peroxidation product), and 3-nitrotyrosine (another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to oxidative stress in synaptosomes isolated from gerbils that were injected with saline, but treated with Fe2+/H2O2 or AAPH. These results are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders.  相似文献   

14.
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn2+ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn2+ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.  相似文献   

15.
Tricyclodecan-9-yl-xanthogenate (D609) has been shown to possess both neuroprotective and anti-proliferative properties. We investigated the role of D609 in reducing the proliferation of neural progenitor cells in vitro. D609 decreased the expression of cyclin D1 after 1 day but not 2 or 4 days in culture, indicating the possible degradation/inactivation of drug in the medium. Consistent with this notion, spectral analysis showed the maximum absorbance of D609 (100 μM) at 300 nm, which decreased by ~30 % following incubation at 37 °C for 24 h. Further experiments revealed that incubation of neural progenitor cells with D609 decreased the phosphorylation of extracellular signal-regulated kinase (ERK) but not Akt. In addition, increasing the concentration of B27 (1–4 %), but not FGF2, diminished the effect of D609 on cell proliferation. These results together suggest that D609 may curtail the proliferation of neural progenitor cells by decreasing the ERK-mediated expression of cyclin D1 and may have a therapeutic potential in containing the proliferation of tumor stem cells.  相似文献   

16.
Circular RNAs (circRNAs) are a novel group of endogenous RNAs with a circular structure. Growing evidence indicates that circRNAs are involved in a variety of human diseases including malignancies. CircRNA ZNF609 (circ-ZNF609), derived from the ZNF609 gene sequence, has been demonstrated to be involved in the development and progression of many diseases. circ-ZNF609 is thought to be a viable diagnostic and prognostic biomarker for several diseases and might be a new therapeutic target, but further research is needed to accelerate clinical application. Here, we review the biogenesis and function of circRNAs and the functional roles and molecular mechanism related to circ-ZNF609 in neoplasms and other diseases.  相似文献   

17.
Cover: Cover: Model of oscillatory motion of chromatin domains (ChrD) and replication timing. See article on page 609–616 by Pliss et al, in this issue. Cover design by Priscilla Vazquez.  相似文献   

18.
In order to investigate the effects of tricyclodecane-9-yl-xanthogenate (D609) on the survival of neural stem cells (NSCs), which were isolated from rat forebrain, we treated the NSCs with D609 in the presence of basic fibroblast growth factor (bFGF). We found that when NSCs were exposed to 18.76-56.29 microM D609, the viability of the cells remarkably declined and apoptosis occurred. At the same time, the ROS level in NSCs was depressed. The data suggested that D609 was a powerful growth inhibitor and apoptosis inducer in NSCs.  相似文献   

19.
The association between the NAD(P)H: quinone oxidoreductase 1 (NQO1) gene C609T polymorphism and gastric cancer has been widely evaluated, yet with conflicting results. Data were available from seven study populations involving 2600 subjects. Overall, comparison of alleles 609T and 609C indicated a significantly increased risk (46%) for gastric cancer (95% confidence interval (95%CI) for odds ratio (OR) = 1.20-1.79) in individuals with the T allele. The tendency was increased in the homozygous comparison (609TT versus 609CC), with an OR = 2.04 (95%CI = 1.37-3.05). Stratified analysis by study design demonstrated stronger associations in population-based studies than in hospital-based studies, based on OR. Ethnicity-based analysis demonstrated a significant association in Asians but not in Caucasians. Additionally, in the subgroup analyses by the type of gastric cancer, a significantly increased risk was found with all genetic models in the gastric adenocarcinoma subgroup compared to the others. We conclude that the NQO1 gene C609T polymorphism increases the risk for gastric cancer, especially in Asian populations.  相似文献   

20.
Esophageal cancer (EC) is a complex multifactorial disorder, where environmental and genetic factors play major role. NADPH:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) are phase II cytosolic enzymes that catalyze metabolism of quinones, important in the detoxification of environmental carcinogens. A case-control study was performed to investigated the associations of NQO1 609C>T and NQO2 -3423G>A polymorphisms with susceptibility to EC in a high-risk Kashmiri population of India in 135 EC patients and 195 unrelated healthy controls using PCR-RFLP. We also performed a meta analysis of nine published studies (1,224 cases and 1,740 controls) on NQO1 609C>T and evaluated the association between the NQO1 609C>T polymorphisms and esophageal cancer risk. A significant difference in NQO1 609C>T and NQO2 -3423G>A genotype distribution between EC cases and corresponding controls groups was observed (OR = 2.65; 95 % CI = 1.29-5.42 and OR = 1.88; 95 % CI = 1.02-3.49 respectively). Further, gene-gene interaction showed significantly increased risk for esophageal adenocarcinoma with variant genotypes of NQO1 609C>T and NQO2 -3423G>A polymorphisms and interaction with environmental risk factors revealed pronounced risk of EC with NQO1 609C>T TT genotype in high salted tea users of Kashmir valley (OR = 3.72, 95 % CI = 0.98-14.19). Meta analysis of NQO 609C>T polymorphism also suggested association of the polymorphism with EC in Asians as well as Europeans. In conclusion, NQO1 609C>T and NQO2 -3423G>A genetic variations modulate risk of EC in high-risk Kashmir population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号