首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the pineal gland of the wild-captured eastern chipmunk (Tamias striatus) was examined. A homogenous population of pinealocytes was the characteristic cellular element of the chipmunk pineal gland. Often, pinealocytes showed a folliclelike arrangement. Mitochondria, Golgi apparatus, granular endoplasmic reticulum, lysosomes, centrioles, dense-core vesicles, clear vesicles, glycogen particles, and microtubules were consistent components of the pinealocyte cytoplasm. The extraordinary ultrastructural feature of the chipmunk pinealocyte was the presence of extremely large numbers of “synaptic” ribbons. The number of “synaptic” ribbons in this species exceeded by a factor of five to 30 times that found in any species previously reported. In addition to pinealocytes, the pineal parenchyma contained glial cells (oligodendrocytes and fibrous astrocytes). Capillaries of the pineal gland of the chipmunk consisted of a fenestrated endothelium. Adrenergic nerve terminals were relatively sparse.  相似文献   

2.
Nachum Dafny 《Life sciences》1980,26(9):737-742
In this study, average photic evoked responses were recorded simultaneously in freely behaving rats from the pineal body and the ventromedial hypothalamus; permanent semimicroelectrodes were implanted several days before the experiments were begun, and both local anesthesia (xylocaine), sympathectomy, and general anesthesia (barbiturate) were used as tools to find out whether or not photic responses are transmitted to the pineal via the superior cervical ganglion (scg)-nervi conorii and/or through another CNS route. The experiments demonstrated that the photic evoked responses recorded from the pineal are transmitted via two separate routes: one, a fast pathway with a “shorter” latency, via the CNS, i.e., the habencular posterior commissure complex, and the other a “slower” (or longer) pathway via the scg to the pineal.  相似文献   

3.
4.
Gap junctions between guinea-pig pinealocytes   总被引:1,自引:0,他引:1  
Summary In accordance with previous results in rats, belt-like arrangements of fenestrated gap junctions have been found around the collicular segments of pineal cells in the guinea pig. In addition, macular interpinealocyte gap junctions have been observed in this species.S.-K. Huang was a recipient of a Humboldt Foundation fellowship.  相似文献   

5.
A 13.5-year-old girl who developed puberty due to HCG production by suprasellar ectopic pinealoma was reported. This girl appeared to be in a state of precocious puberty at the age of 5 when ectopic pinealoma was first diagnosed. Her breasts started to develop at 13 years of age in spite of hypopituitarism. Plasma LH was found to increase for several months and gave rise to suspicion of the recurrence of the tumor, which was confirmed by the detection of HCG in plasma and CSF. Precocious puberty or puberty can be a characteristic endocrinological manifestation of an HCG producing tumor not only in boys but also in girls. The measurement of plasma HCG (or LH) can be a useful tumor marker in following the clinical course of an HCG producing tumor.  相似文献   

6.
7.
Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis “in vivo” more often display peculiar features that correspond to a distinct process of programmed cell death termed “chondroptosis”. Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the “chondroptotic” phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and “chondroptotic” cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.  相似文献   

8.
TAURINE DISTRIBUTION IN CAT BRAIN   总被引:3,自引:2,他引:1  
Abstract— The distribution of taurine was investigated in 16 areas of the brain, in cats transected either at collicular or at midpontine level. A comparison was also made between the content in the same areas of the cerebral cortex of the two groups of cats showing respectively either a synchronized or an activated electrocorticogram. Taurine was determined in picric acid extracts by means of column chromatography followed by thin layer chromatography of the eluates. The levels of taurine were fairly uniform in all areas investigated with the exception of the lateral geniculate bodies, the pituitary gland and the pineal gland where the levels were higher than in all other regions. The taurine content of the cortex of cats showing a synchronized EEG pattern was higher than in the cortex of cats showing an activated pattern. The results are discussed in the light of the limited information available on the possible role of taurine in the CNS.  相似文献   

9.
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to “see the light” in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land‐dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light‐controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin‐expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface‐reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin‐expressing eye cells in mammals, and by as yet unknown non‐visual opsins in the pineal gland of non‐mammals.  相似文献   

10.
THE model proposed by Alper1 for lethal radiation damage to cells is based on inferential evidence that there are two important sites of damage by ionizing radiation. At one site, damage referred to as type “N” is associated with a low oxygen enhancement ratio (OER) and is probably to nucleic acid, while at the other site, type “O” damage is associated with a considerably higher oxygen enhancement value and is to a non-nucleic acid target. The model demands that the two values of OER are respectively less and greater than that observed for the overall lethal effect. More recently2 Alper reviewed further inferential evidence3 that cell membranes are the site of type O damage, though there may be subsequent interaction with the lesions following energy deposition in DNA4.  相似文献   

11.
Cardinal neon Paracheirodon axelrodi and bloodfin tetra Aphyocharax anisitsi are two species of characids with high trade value as ornamental fish in South America. Although both species inhabit middle water layers, cardinal neon exhibits a tropical distribution and bloodfin tetra a subtropical one. In this work, we carried out an anatomical, histological and immunohistochemical study of the pineal complex of P. axelrodi and A. anisitsi. In both species, the pineal complex consisted of three components, the pineal and parapineal organs and the dorsal sac (DS). The pineal organ was composed of a short, thin pineal stalk (PS), vertically disposed with respect to the upper surface of the telencephalon, and a pineal vesicle (PV), located at the distal end of the PS and attached to the skull by connective tissue. The pineal window (PW), a site in the skull where the luminal information accesses the pineal organ, appeared just above the latter structures. In the epidermis of P. axelrodi's PW, club cells were identified, but were not observed in the epidermis of A. anisitsi's one. With respect to the DS, it appeared to be folded on itself, and was bigger and more folded in A. anisitsi than in P. axelrodi. Immunohistochemical assays revealed the presence of cone opsin‐like and rod opsin‐like photoreceptor cells in the PS and PV. These results provide a first insight into the morphological assembly of the pineal complex of both species, and contribute to a better understanding of the integration and transduction of light stimuli in characids. J. Morphol. 277:1355–1367, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
AimsMelatonin is a hormone synthesized principally in the pineal gland that has been classically associated with endocrine actions. However, several lines of evidence suggest that melatonin plays a role in pain modulation. This paper reviews the available evidence on melatonin's analgesic effects in animals and human beings.Main methodsA medline search was performed using the terms “melatonin”, “inflammatory pain”, “neuropathic pain”, “functional pain”, “rats”, “mice”, “human”, “receptors”, “opioid” and “free radicals” in combinations.Key findingsThe antinociceptive effect of melatonin has been evaluated in diverse pain models, and several findings show that melatonin receptors modulate pain mechanisms as activation induces an antinociceptive effect at spinal and supraspinal levels under conditions of acute and inflammatory pain. More recently, melatonin induced-antinociception has been extended to neuropathic pain states. This effect agrees with the localization of melatonin receptors in thalamus, hypothalamus, dorsal horn of the spinal cord, spinal trigeminal tract, and trigeminal nucleus. The effects of melatonin result from activation of MT1 and MT2 melatonin receptors, which leads to reduced cyclic AMP formation and reduced nociception. In addition, melatonin is able to activate opioid receptors indirectly, to open several K+ channels and to inhibit expression of 5-lipoxygenase and cyclooxygenase 2. This hormone also inhibits the production of pro-inflammatory cytokines, modulates GABAA receptor function and acts as a free radical scavenger.SignificanceMelatonin receptors constitute attractive targets for developing analgesic drugs, and their activation may prove to be a useful strategy to generate analgesics with a novel mechanism of action.  相似文献   

13.
Abstract

Photomorphogenic responses induced by UV-B radiation in Brassica oleracea var. capitata.—Ultraviolet radiation can induce a plethora of “damaging” and “non damaging” effects in higher plants. We analyzed two possible photomorphogenic responses to UV-B radiation, the anthocyanin accumulation and the inhibition of hypocotyl elongation by modifying the UV spectral range with specific cut-off filters, under two levels of photon fluence rate. Experimental results suggest that detrimental effects are due to shorter wavelenghts of UV-B region (less than 305 nm); in contrast some adaptative responses may be induced by longer wavelenghts of UV-B region (between 305 and 320 nm). We attempted to determine the involvment of endogenous anthocyanin content in the UV-B photoprotection. Our experiments suggest a secondary role of anthocyanin accumulation in UV-B plant adaptation.  相似文献   

14.
Dosimetry in small radiation field is challenging and complicated because of dose volume averaging and beam perturbations in a detector. We evaluated the suitability of the “Edge-on” MOSkin (MOSFET) detector in small radiation field measurement. We also tested the feasibility for dosimetric verification in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). “Edge-on” MOSkin detector was calibrated and the reproducibility and linearity were determined. Lateral dose profiles and output factors were measured using the “Edge-on” MOSkin detector, ionization chamber, SRS diode and EBT2 film. Dosimetric verification was carried out on two SRS and five SRT plans. In dose profile measurements, the “Edge-on” MOSkin measurements concurred with EBT2 film measurements. It showed full width at half maximum of the dose profile with average difference of 0.11 mm and penumbral width with difference of ±0.2 mm for all SRS cones as compared to EBT2 film measurement. For output factor measurements, a 1.1% difference was observed between the “Edge-on” MOSkin detector and EBT2 film for 4 mm SRS cone. The “Edge-on” MOSkin detector provided reproducible measurements for dose verification in real-time. The measured doses concurred with the calculated dose for SRS (within 1%) and SRT (within 3%). A set of output correction factors for the “Edge-on” MOSkin detector for small radiation fields were derived from EBT2 film measurement and presented. This study showed that the “Edge-on” MOSkin detector is a suitable tool for dose verification in small radiation field.  相似文献   

15.
Secondary mesenchyme cells (SMCs) of the sea urchin embryo are composed of pigment cells, blastocoelar cells, spicule tip cells, coelomic pouch cells and muscle cells. To learn how and when these five types of SMCs are specified in the veg2 descendants, Notch or Nodal signaling was blocked with γ‐secretase inhibitor or Nodal receptor inhibitor, respectively. All types of SMCs were decreased with DAPT, while sensitivity to this inhibitor varied among them. Pulse‐treatment revealed that five types of SMCs are divided into “early” (pigment cells and blastocoelar cells) and “late” (spicule tip cells, coelomic pouch cells and muscle cells) groups; the “early” group was sensitive to DAPT up to the hatching, and the “late” group was sensitive until the mesenchyme blastula stage. Judging from timing of the shift of Delta‐expressing regions, it was suggested that the “early” group and “late” groups are derived from the lower and the middle tier of veg2 descendants, respectively. Interestingly, numbers of SMCs were also altered with SB431542; blastocoelar cells, coelomic pouch cells and circum‐esophageal muscles decreased, whereas pigment cells and spicule tip cells increased in number. Pulse‐treatment showed that the “early” group was sensitive up to the mesenchyme blastula stage, while the “late” group up to the onset of gastrulation. Thus, it became clear that precursor cells of the “early” and “late” groups, which are located in different regions in the vegetal plate, receive Delta and Nodal signals at different timings, resulting in the diversification of SMCs. Based on the obtained results, the specification processes of five types of SMCs are diagrammatically presented.  相似文献   

16.
The results of numerous studies indicate that cells can become refractory to the detrimental effect of ionizing radiation when previously exposed to a low, “adapting dose”;. This phenomenon has been termed an “adaptive response”; to ionizing radiation. It has been postulated that the induced radioresistance is due to the induction of DNA repair systems which efficiently protect the adapted cells from the effects of a subsequent, high “challenging dose”;. However, a direct proof of this hypothesis is still lacking. The analyzed endpoints include chromosomal aberrations, survival, mutations, genetic instability and DNA damage repair measured by the comet assay. Frequently contradictory results were published by different authors. For example some authors observed a reduced frequency of apoptosis in adapted cells, whereas others reported the opposite. The source of variablity of the adaptive response in human lymphocytes remains unresolved. While there is no doubt that an adapting dose can trigger some protecting mechanisms within the cell it appears that there is no single, universal mechanism of the adaptive response that is valid for all cell types and irradiation conditions.  相似文献   

17.
The putative cholinergic and GABAergic elements of the pineal organ of lampreys were investigated with immunocytochemistry to choline acetyltransferase (ChAT) and γ-aminobutyric acid (GABA), and by acetylcholinesterase (AChE) histochemistry. For comparison we also carried out immunocytochemistry to serotonin (5-HT) and a tract-tracing investigation of the two types of projecting cells, i.e., ganglion cells and long-axon photoreceptors. Most photoreceptors were ChAT-immunoreactive (ChAT-ir) and AChE-positive, while ganglion cells and the pineal tract were ChAT-negative and AChE-negative or only faintly positive. These results strongly suggest the presence of a cholinergic system of photoreceptors in the lamprey pineal organ. GABA-ir fibers that appear to originate from faintly to moderately stained ganglion cells were observed in the pineal stalk. Immunocytochemistry to 5-HT indicated the presence of two types of 5-HT-ir cells, bipolar cells and ganglion-like cells. The connections of the ganglion cells and long-axon photoreceptors were also studied by application of DiI to the pineal stalk in fixed brains or of biotinylated dextran amine (BDA) to one of the main targets of pinealofugal fibers (optic tectum or mesencephalic tegmentum) in isolated brains in vitro. Some long-axon photoreceptors and ganglion cells were labeled from the optic tectum. However, BDA application to the tegmentum exclusively labeled ganglion cells in the pineal organ. These results indicate that the two morphological types of afferent pineal neuron have different projections. No labeled cells were observed in the parapineal organ in BDA experiments, indicating that this organ and the pineal organ are involved in different neural circuits.  相似文献   

18.
BackgroundPelvic organs morbidity after irradiation of cancer patients remains a major problem although new technologies have been developed and implemented. A relatively simple and suitable method for routine clinical practice is needed for preliminary assessment of normal tissue intrinsic radiosensitivity. The micronucleus test (MNT) determines the frequency of the radiation induced micronuclei (MN) in peripheral blood lymphocytes, which could serve as an indicator of intrinsic cell radiosensitivity.AimTo investigate a possible use of the micronucleus test (MNT) for acute radiation morbidity prediction in gynecological cancer patients.Materials and methodsForty gynecological cancer patients received 50 Gy conventional external pelvic irradiation after radical surgery. A four-field “box” technique was applied with 2D planning. The control group included 10 healthy females.Acute normal tissue reactions were graded according to NCI CTCAE v.3.0. From all reaction scores, the highest score named “summarized clinical radiosensitivity” was selected for a statistical analysis.MNT was performed before and after in vitro irradiation with 1.5 Gy. The mean radiation induced frequency of micronuclei per 1000 binucleated cells (MN/1000) and lymphocytes containing micronuclei per 1000 binucleated cells (cells with MN/1000) were evaluated for both patients and controls.An arbitrary cut off value was created to pick up a radiosensitive individual: the mean value of spontaneous frequency of cells with MN/1000 ± 2SD, found in the control group.ResultsBoth mean spontaneous frequency of cells with MN/1000 and MN/1000 were registered to be significantly higher in cancer patients compared to the control group (t = 2.46, p = 0.02 and t = 2.51, p = 0.02). No statistical difference was registered when comparing radiation induced MN frequencies between those groups.Eighty percent (32) of patients developed grade 2 summarized clinical radiosensitivity, with great variations in MNT parameters. Only three patients with grade 2 “summarized clinical radiosensitivity” had values of cells with MN/1000 above the chosen radiosensitivity threshold.ConclusionThe present study was not able to confirm in vitro MNT applicability for radiosensitivity prediction in pelvic irradiation.  相似文献   

19.
Diffuse bone marrow uptake of 18F-FDG-PET in cancer patients raises the problem of differential diagnosis between marrow involvement and stimulated marrow. In this study, we prospectively included, during a 1-year period, all cancer patients referred for initial staging showing an unexplained diffuse bone marrow uptake and explored consecutively by MRI. The abnormalities described on PET and the conclusion reached about disease status of bone marrow (“benign” or “malignant”) were compared with corresponding MRI results, as well as clinical and biological findings pertinent when bone marrow activity is studied, marrow status considered by referring clinicians, and follow-up data. During 1 year, 60 patients had diffuse bone marrow uptake on 18F-FDG-PET, 26 underwent MRI examination and were finally included in the study. Results of PET and MRI were concordant in 24 cases (six “malignant” and 18 “benign”) and two cases were discordant, judged “malignant” by MRI and “benign”by PET. The outcome after confrontation of MRI and PET, was “malignant”for one patient and “benign” for the other one. The final results, was “malignant” for seven patients and “benign” for 19 patients and this final diagnosis was retained by referring clinicians. Among the 19 patients with diffuse bone marrow uptake considered as benign, seven patients had a pejorative evolution and four of them developed osteomedullary metastases. In cancer patients, 18F-FDG-PET identify bone marrow diffuse uptake which seems to correspond well to abnormalities assessed on MRI studies. Notably, heterogenous 18F-FDG uptake and/or foci of increased uptake seems significative of marrow involvement. The limited population size and discordant published findings about bone marrow evaluation by 18F-FDG-PET compared with MRI can not permit to ensure that these imaging modalities or one of these are sufficient to assess bone marrow status without performing bone marrow biopsy. Some patients with unexplained diffuse bone marrow uptake develop disease progression, such observations could be interestingly assessed by further studies.  相似文献   

20.
Radiation-induced tumor cells death is the theoretical basis of tumor radiotherapy. Death signaling disorder is the most important factor for radioresistance. However, the signaling pathway(s) leading to radiation-triggered cell death is (are) still not completely known. To better understand the cell death signaling induced by radiation, the immortalized mouse embryonic fibroblast (MEF) deficient in “initiator” caspases, “effector” caspases or different Bcl-2 family proteins together with human colon carcinoma cell HCT116 were used. Our data indicated that radiation selectively induced the activation of caspase-9 and caspase-3/7 but not caspase-8 by triggering mitochondrial outer membrane permeabilization (MOMP). Importantly, the role of radiation in MOMP is independent of the activation of both “initiator” and “effector” caspases. Furthermore, both proapoptotic and antiapoptotic Bcl-2 family proteins were involved in radiation-induced apoptotic signaling. Overall, our study indicated that radiation specifically triggered the intrinsic apoptotic signaling pathway through Bcl-2 family protein-dependent mitochondrial permeabilization, which indicates targeting mitochondria is a promising strategy for cancer radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号