首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reiterated Wnt signaling during zebrafish neural crest development   总被引:5,自引:0,他引:5  
While Wnt/beta-catenin signaling is known to be involved in the development of neural crest cells in zebrafish, it is unclear which Wnts are involved, and when they are required. To address these issues we employed a zebrafish line that was transgenic for an inducible inhibitor of Wnt/beta-catenin signaling, and inhibited endogenous Wnt/beta-catenin signaling at discrete times in development. Using this approach, we defined a critical period for Wnt signaling in the initial induction of neural crest, which is distinct from the later period of development when pigment cells are specified from neural crest. Blocking Wnt signaling during this early period interfered with neural crest formation without blocking development of dorsal spinal neurons. Transplantation experiments suggest that neural crest precursors must directly transduce a Wnt signal. With regard to identifying which endogenous Wnt is responsible for this initial critical period, we established that wnt8 is expressed in the appropriate time and place to participate in this process. Supporting a role for Wnt8, blocking its function with antisense morpholino oligonucleotides eliminates initial expression of neural crest markers. Taken together, these results demonstrate that Wnt signals are critical for the initial induction of zebrafish neural crest and suggest that this signaling pathway plays reiterated roles in its development.  相似文献   

2.
Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7.  相似文献   

3.
4.
Stem cells are central to developing new treatment options for tissue regeneration and constructing controllable models for biological research. Bioengineered cell culture environments that combine microenvironmental control with tissue-specific transport and signaling are critical tools in our efforts to study tissue development, regeneration, and disease under conditions that predict the human in vivo context. We propose that experimentation at the interfaces of biology, engineering, and medical sciences is critical for unlocking the full potential of stem cells. Here, we focus on the design and utilization of in vitro platforms that recapitulate the environments associated with tissue development, disease, and regeneration.  相似文献   

5.
6.
Apoptosis is a conserved genetic program critical for the development and homeostasis of the immune system. During the early stages of lymphopoiesis, growth factor signaling is an essential regulator of homeostasis by regulating the survival of lymphocyte progenitors. During differentiation, apoptosis ensures that lymphocytes express functional antigen receptors and is essential for eliminating lymphocytes with dangerous self-reactive specificities. Many of these critical cell death checkpoints during immune development are regulated by the BCL-2 family of proteins, which is comprised of both pro- and antiapoptotic members, and members of the tumor necrosis factor death receptor family. Aberrations in the expression or function of these cell death modulators can result in pathological conditions including immune deficiency, autoimmunity, and cancer. This review will describe how apoptosis regulates these critical control points during immune development.  相似文献   

7.
The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus-reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.  相似文献   

8.
The epithelial-mesenchymal transition is a highly conserved cellular program that allows polarized, immotile epithelial cells to convert to motile mesenchymal cells. This important process was initially recognized during several critical stages of embryonic development and has more recently been implicated in promoting carcinoma invasion and metastasis. In this review, we summarize and compare major signaling pathways that regulate the epithelial-mesenchymal transitions during both development and tumor metastasis. Studies in both fields are critical for our molecular understanding of cell migration and morphogenesis.  相似文献   

9.
Eugenicists in the 1930s and 1940s emphasised our moral responsibilities to future generations and the importance of positively selecting traits that would benefit humanity. In 1935 Herbert Brewer recommended 'Eutelegenesis' (artificial insemination with sperm from specially selected males) so that that future generations are not only protected from hereditary disease but also become more intelligent and fraternal than us. The development of these techniques for human use and animal husbandry was the catalyst for the cross fertilization of moral ideas and the development of a critical procreative morality. While eugenicists argued for a new critical morality, religious critics argued against artificial insemination because of its potential to damage important moral institutions. The tension between critical and conservative procreative morality is a feature of the contemporary debates about reproductive technologies. This and some of the other aspects of the early and contemporary debates about artificial insemination and reproductive technologies are discussed in this article.  相似文献   

10.
In Sorghum bicolor, tolerance to salinity is improved by a 3-week treatment with 150 mM NaCl during early vegetative development. However, a strong decrease in fertility is also observed, suggesting that reproductive development becomes perturbed by this adaptive response to salinity. This study is an attempt to clarify the origin of such a paradoxical phenomenon. The relationships between end-cycle characters are modified by the NaCl treatment: some linkages disappear, while others are strengthened, especially those linking fertility with plant height. In parallel, a transient reduced level of linkage between leaf characters is observed around the unfolding of the eighth to the tenth leaves, defining a critical period in vegetative development separating two discrete phases. A relationship is observed between events occurring during this short critical period and the NaCl-induced perturbations in fertility. This suggests that reproductive development is conditioned by the influence of salinity on events occurring during a short period of vegetative development, independently of the level of tolerance to salinity quantified by the rate of vegetative growth.  相似文献   

11.
Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling.Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase(KAT) and lysine deacetylase(KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine(de)acetylation machineries.  相似文献   

12.
The metabolic syndrome is characterized by a state of metabolic dysfunction resulting in the development of several chronic diseases that are potentially deadly. These metabolic deregulations are complex and intertwined and it has been observed that many of the mechanisms and pathways responsible for diseases characterizing the metabolic syndrome such as type 2 diabetes and cardiovascular disease are linked with cancer development as well. Identification of molecular pathways common to these diverse diseases may prove to be a critical factor in disease prevention and development of potential targets for therapeutic treatments. This review focuses on several molecular pathways, including AMPK, PPARs and FASN that interconnect cancer development, type 2 diabetes and cardiovascular disease. AMPK, PPARs and FASN are crucial regulators involved in the maintenance of key metabolic processes necessary for proper homeostasis. It is critical to recognize and identify common pathways deregulated in interrelated diseases as it may provide further information and a much more global picture in regards to disease development and prevention. Thus, this review focuses on three key metabolic regulators, AMPK, PPARs and FASN, that may potentially serve as therapeutic targets.  相似文献   

13.
Obesity is a condition characterized by excess adipose tissue that results from positive energy balance and is the most common metabolic disorder in the industrialized world. The obesity epidemic shows no sign of slowing, and it is increasingly a global problem. Serious clinical problems associated with obesity include an increased risk for type 2 diabetes, atherosclerosis, and cancer. Hence, understanding the origin and development of adipocytes and adipose tissue will be critical to the analysis and treatment of metabolic diseases. Historically, albeit incorrectly, adipocytes were thought to be inert cells whose singular function was lipid storage. It is now known that adipocytes have other critical functions; the most important include sensitivity to insulin and the ability to produce and secrete adipocyte-specific endocrine hormones that regulate energy homeostasis in other tissues. Today, adipocytes are recognized as critical regulators of whole-body metabolism and known to be involved in the pathogenesis of a variety of metabolic diseases. All cells come from other cells and many cells arise from precursor cells. Adipocytes are not created from other adipocytes, but they arise from precursor cells. In the last two decades, scientists have discovered the function of many proteins that influence the ability of precursor cells to become adipocytes. If the expansion of the adipose tissue is the problem, it seems logical that adipocyte development inhibitors could be a viable anti-obesity therapeutic. However, factors that block adipocyte development and limit adipocyte expansion also impair metabolic health. This notion may be counterintuitive, but several lines of evidence support the idea that blocking adipocyte development is unhealthy. For this reason it is clear that we need a better understanding of adipocyte development.  相似文献   

14.
The determination of a precise number of cells within a structure and of a precise number of cellular structures within an organ is critical for correct development in animals and plants. However, relatively little is known about the molecular mechanisms that ensure that these numbers are achieved. We discuss counting mechanisms that operate during ovarian development and oogenesis.  相似文献   

15.
Thymocyte development proceeds through two critical checkpoints that involve signaling events through two different receptors, the TCR and the pre-TCR. These receptors employ two families of protein tyrosine kinases to propagate their signals, the Src and Syk families. Genetic and biochemical evidence has shown that the Src family kinases are critical for normal T cell maturation. ZAP-70, a Syk family kinase, has similarly been implicated as a critical component in thymocyte development. Although genetic evidence has suggested that Syk is involved during thymocyte development, a definitive study of Syk expression has not been performed. In this paper we report our reanalysis of Syk expression in subpopulations of murine and human thymocytes by intracellular staining and flow cytometry using anti-Syk mAbs. Syk is expressed at increased levels during the stages in which pre-TCR signaling occurs. Furthermore, Syk is down-regulated after the pre-TCR checkpoint has been passed. Syk may play an important role in thymic development during pre-TCR signal transduction. Finally, incomplete down-regulation of Syk expression was noted in human thymocytes, offering a possible explanation for the distinct phenotypes of mice and humans deficient in ZAP-70.  相似文献   

16.
Normal development of the male rat brain involves two distinct processes, masculinization and defeminization, that occur during a critical period of brain sexual differentiation. Masculinization allows for the capacity to express male sex behavior in adulthood, and defeminization eliminates or suppresses the capacity to express female sex behavior in adulthood. Despite being separate processes, both masculinization and defeminization are induced by neonatal estradiol exposure. Though the mechanisms underlying estradiol-mediated masculinization of behavior during development have been identified, the mechanisms underlying defeminization are still unknown. We sought to determine whether neonatal activation of glutamate NMDA receptors is a necessary component of estradiol-induced defeminization of behavior. We report here that antagonizing glutamate receptors during the critical period of sexual differentiation blocks estradiol-induced defeminization but not masculinization of behavior in adulthood. However, enhancing NMDA receptor activation during the same critical period mimics estradiol to permanently induce both defeminization and masculinization of sexual behavior.  相似文献   

17.
18.
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the “critical size” (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.  相似文献   

19.
H C Lu  E Gonzalez  M C Crair 《Neuron》2001,32(4):619-634
The regulation of NMDA receptor (NMDAR) subunit composition and expression during development is thought to control the process of thalamocortical afferent innervation, segregation, and plasticity. Thalamocortical synaptic plasticity in the mouse is dependent on NMDARs containing the NR2B subunit, which are the dominant form during the "critical period" window for plasticity. Near the end of the critical period there is a gradual increase in the contribution of NR2A subunits that happens in parallel to changes in NMDAR-mediated current kinetics. However, no extension of the critical period occurs in NR2A knockout mice, despite the fact that NMDA subunit composition and current kinetics remain immature past the end of the critical period. These data suggest that regulation of NMDAR subunit composition is not essential for closing the critical period plasticity window in mouse somatosensory barrel cortex.  相似文献   

20.
《Hormones and behavior》2009,55(5):662-668
Normal development of the male rat brain involves two distinct processes, masculinization and defeminization, that occur during a critical period of brain sexual differentiation. Masculinization allows for the capacity to express male sex behavior in adulthood, and defeminization eliminates or suppresses the capacity to express female sex behavior in adulthood. Despite being separate processes, both masculinization and defeminization are induced by neonatal estradiol exposure. Though the mechanisms underlying estradiol-mediated masculinization of behavior during development have been identified, the mechanisms underlying defeminization are still unknown. We sought to determine whether neonatal activation of glutamate NMDA receptors is a necessary component of estradiol-induced defeminization of behavior. We report here that antagonizing glutamate receptors during the critical period of sexual differentiation blocks estradiol-induced defeminization but not masculinization of behavior in adulthood. However, enhancing NMDA receptor activation during the same critical period mimics estradiol to permanently induce both defeminization and masculinization of sexual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号