首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The serine/threonine kinase CHK2 is a keycomponent of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates 〉20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In par- ticular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy.  相似文献   

2.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

3.
Homologous recombination (HR) is essential for genome integrity. Recombination proteins participate in tolerating DNA lesions that interfere with DNA replication, but can also generate toxic recombination intermediates and genetic instability when they are not properly regulated. Here, we have studied the role of the recombination proteins Rad51 and Rad52 at replication forks and replicative DNA lesions. We show that Rad52 loads Rad51 onto unperturbed replication forks, where they facilitate replication of alkylated DNA by non‐repair functions. The recruitment of Rad52 and Rad51 to chromatin during DNA replication is a prerequisite for the repair of the non‐DSB DNA lesions, presumably single‐stranded DNA gaps, which are generated during the replication of alkylated DNA. We also show that the repair of these lesions requires CDK1 and is not coupled to the fork but rather restricted to G2/M by the replicative checkpoint. We propose a new scenario for HR where Rad52 and Rad51 are recruited to the fork to promote DNA damage tolerance by distinct and cell cycle‐regulated replicative and repair functions.  相似文献   

4.
Accurate DNA replication involves polymerases with high nucleotide selectivity and proofreading activity. We show here why both fidelity mechanisms fail when normally accurate T7 DNA polymerase bypasses the common oxidative lesion 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8oG). The crystal structure of the polymerase with 8oG templating dC insertion shows that the O8 oxygen is tolerated by strong kinking of the DNA template. A model of a corresponding structure with dATP predicts steric and electrostatic clashes that would reduce but not eliminate insertion of dA. The structure of a postinsertional complex shows 8oG(syn).dA (anti) in a Hoogsteen-like base pair at the 3' terminus, and polymerase interactions with the minor groove surface of the mismatch that mimic those with undamaged, matched base pairs. This explains why translesion synthesis is permitted without proofreading of an 8oG.dA mismatch, thus providing insight into the high mutagenic potential of 8oG.  相似文献   

5.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

6.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

7.
Mammalian cells are constantly threatened by multiple types of DNA lesions arising from various sources like irradiation, environmental agents, replication errors or by-products of the normal cellular metabolism. If not readily detected and repaired these lesions can lead to cell death or to the transformation of cells giving rise to life-threatening diseases like cancer. Multiple specialized repair pathways have evolved to preserve the genetic integrity of a cell. The increasing number of DNA damage sensors, checkpoint regulators, and repair factors identified in the numerous interconnected repair pathways raises the question of how DNA repair is coordinated. In the last decade, various methods have been developed that allow the induction of DNA lesions and subsequent real-time analysis of repair factor assembly at DNA repair sites in living cells. This combination of biophysical and molecular cell biology methods has yielded interesting new insights into the order and kinetics of protein recruitment and identified regulatory sequences and selective loading platforms for the efficient restoration of the genetic and epigenetic integrity of mammalian cells.  相似文献   

8.
Apoptosis is a highly orchestrated cell suicidal program required to maintain a balance between cell proliferation and cell death. A defect in apoptotic machinery can cause cancer. Many anticancer drugs are known to kill tumor cells by inducing apoptosis, and a defect in apoptosis can lead to anticancer drug resistance. Apoptosis is regulated by a complex cellular signaling network. Several members of the protein kinase C (PKC) family serve as substrates for caspases and PKCδ isozyme has been intimately associated with DNA damage-induced apoptosis. It can act both upstream and downstream of caspases. In response to apoptotic stimuli, the full-length and the catalytic fragment of PKCδ may translocate to distinct cellular compartments, including mitochondria and the nucleus, to reach their targets. Both activation and intracellular distribution of PKCδ may have significant impact on apoptosis. This review intends to assimilate recent views regarding the involvement of PKCδ in DNA damage-induced apoptosis.  相似文献   

9.
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.  相似文献   

10.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

11.
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.  相似文献   

12.
3-nitrotyrosine (NO2-Tyr) is thought to be a specific marker of cell injury during oxidative damage. We have evaluated the role of poly(ADP-ribose)polymerase-1 (PARP-1) in protein nitration after treatment of immortalized fibroblasts parp-1+/+ and parp-1-/- with the alkylating agent 2'-methyl-2'-nitroso-urea (MNU). Both cell lines showed increased iNOS expression following MNU treatment in parallel with a selective induction of tyrosine nitration of different proteins. PARP-1 deficient cells displayed a delayed iNOS accumulation, reduced number of nitrated proteins, and a lower global nitrotyrosine "footprint." We have identified the mitochondrial compartment as the major site of oxidative stress during DNA damage, being MnSOD one of the NO2-Tyr-modified proteins, but not in parp-1-/- cells. These results suggest that NO-derived injury can be modulated by proteins involved in the response to genotoxic damage, such as PARP-1, and may account for the limited oxidative injury in parp-1 knockout mice during carcinogenesis and inflammation.  相似文献   

13.
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53−/− tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.  相似文献   

14.
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK family of protein kinases, and is involved in intracellular signalling pathways stimulated by transforming growth factor beta, interleukin-1 and tumour necrosis factor-alpha. TAK1 is known to rely upon an additional protein, TAK1-binding protein 1 (TAB1), for complete activation. However, the molecular basis for this activation has yet to be elucidated. We have solved the crystal structure of a novel TAK1 chimeric protein and these data give insight into how TAK1 is activated by TAB1. Our results reveal a novel binding pocket on the TAK1 kinase domain whose shape complements that of a unique alpha-helix in the TAK1 binding domain of TAB1, providing the basis for an intimate hydrophobic association between the protein activator and its target.  相似文献   

15.
Glycogen synthase kinase 3beta (GSK3beta) is a serine/threonine kinase involved in insulin, growth factor and Wnt signalling. In Wnt signalling, GSK3beta is recruited to a multiprotein complex via interaction with axin, where it hyperphosphorylates beta-catenin, marking it for ubiquitylation and destruction. We have now determined the crystal structure of GSK3beta in complex with a minimal GSK3beta-binding segment of axin, at 2.4 A resolution. The structure confirms the co-localization of the binding sites for axin and FRAT in the C-terminal domain of GSK3beta, but reveals significant differences in the interactions made by axin and FRAT, mediated by conformational plasticity of the 285-299 loop in GSK3beta. Detailed comparison of the axin and FRAT GSK3beta complexes allows the generation of highly specific mutations, which abrogate binding of one or the other. Quantitative analysis suggests that the interaction of GSK3beta with the axin scaffold enhances phosphorylation of beta-catenin by >20 000-fold.  相似文献   

16.
The Ser/Thr protein kinase MAPKAP kinase 2 (MK2) plays a crucial role in inflammation. We determined the structure of the kinase domain of MK2 in complex with a low molecular mass inhibitor in two different crystal forms, obtained from soaking and co-crystallization. To our knowledge, these are the first structures of MK2 showing the binding mode of an inhibitor with high binding affinity (IC50 8.5 nM). The two crystal forms revealed conformational flexibility in the binding site and extend the experimental basis for rational drug design. Crystal form-1 contained one MK2 molecule per asymmetric unit. Form-2 contained 12 molecules, which arrange into two different types of MK2 trimers. One of them may serve as a model for an intermediate state during substrate phosphorylation, as each MK2 monomer places its activation segment into the substrate peptide binding groove of the trimer neighbor.  相似文献   

17.
The DNA damage and replication checkpoint kinase Mec1/ATR is a member of the PI3-kinase related kinases that function in response to various genotoxic stresses. The checkpoint clamp 9-1-1 (Rad9-Rad1-Hus1 in S. pombe and mammals; Ddc1-Rad17-Mec3 in S. cerevisiae) executes two distinct checkpoint functions. In S. cerevisiae, DNA-bound 9-1-1 directly activates Mec1 kinase activity, a function that has not been demonstrated in other organisms. A second, conserved activity of 9-1-1 is that of TopBP1/Cut5/Dpb11 recruitment to stalled replication sites; subsequent activation of Mec1/ATR is carried out by TopBP1/Cut5/Dpb11. Biochemical studies indicate that the mode of Mec1/ATR activation by S. cerevisiae 9-1-1 is analogous to activation by S. cerevisiae Dpb11 or by vertebrate TopBP1: activation is mediated by the intrinsically disordered C-terminal tail of each activator. The relative contributions made by multiple activators of Mec1/ATR are discussed.  相似文献   

18.
53BP1 is phosphorylated by the protein kinase ATM upon DNA damage. Even though several ATM phosphorylation sites in 53BP1 have been reported, those sites have little functional implications in the DNA damage response. Here, we show that ATM phosphorylates the S1219 residue of 53BP1 in vitro and that the residue is phosphorylated in cells exposed to ionizing radiation (IR). Transfection with siRNA targeting ATM abolished IR-induced phosphorylation at this residue, supporting the theory that this process is mediated by the kinase. To determine the functional relevance of this phosphorylation event, a U2OS cell line expressing S1219A mutant 53BP1 was established. IR-induced foci formation of MDC1 and γH2AX, DNA damage signaling molecules, was reduced in this cell line, implying that S1219 phosphorylation is required for recruitment of these molecules to DNA damage sites. Furthermore, overexpression of the mutant protein impeded IR-induced G2 arrest. In conclusion, we have shown that S1219 phosphorylation by ATM is required for proper execution of DNA damage response.  相似文献   

19.
As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, RSF complex consists of SNF2h ATPase and Rsf-1. Although it has been reported that SNF2h ATPase is recruited to DNA damage sites (DSBs) in a poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner in DNA damage response (DDR), the function of Rsf-1 is still elusive. Here we show that Rsf-1 is recruited to DSBs confirmed by various cellular analyses. Moreover, the initial recruitment of Rsf-1 and SNF2h to DSBs shows faster kinetics than that of γH2AX after micro-irradiation. Signals of Rsf-1 and SNF2h are retained over 30 min after micro-irradiation, whereas γH2AX signals are gradually reduced at 10 min. In addition, Rsf-1 is accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of Rsf-1 by ATM are required for its accumulation at DSBs. Furtheremore, depletion of Rsf-1 attenuates the activation of DNA damage checkpoint signals and cell survival upon DNA damage. Finally, we demonstrate that Rsf-1 promotes homologous recombination repair (HRR) by recruiting resection factors RPA32 and Rad51. Thus, these findings reveal a new function of chromatin remodeler Rsf-1 as a guard in DNA damage checkpoints and homologous recombination repair.  相似文献   

20.
彭斌  王静  胡源  许兴智 《生命科学》2014,(11):1120-1135
DNA损伤应答(DNA damage response,DDR)是维持基因组稳定性的核心机制,对DDR的研究不仅有助于阐明癌症发生发展的机理,同时也为癌症治疗和抗癌新药开发提供生物学基础。蛋白质翻译后修饰,尤其是蛋白激酶介导的磷酸化修饰和蛋白磷酸酶介导的去磷酸化修饰,参与调控绝大多数的生命活动过程,包括DDR。对蛋白激酶ATM/ATR/CHK2/CHK1介导的DDR的研究已经比较透彻,但是对蛋白磷酸酶在DDR中的功能研究还有待加强和深入。比较全面地综述丝氨酸/苏氨酸蛋白磷酸酶在DDR中的功能并探讨在抗癌新药开发中的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号