首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Electrical Potential Difference Across the Tonoplast of Root Cells   总被引:1,自引:0,他引:1  
Changes in electrical potential, measured as a microelectrodewas advanced into epidermal cells and from cell to cell in rootsof Lolium multiflorum and Zea mays, are described. The recordingssuggest that the electrical potential difference between thecytoplasm and vacuole, Evc is of the order of a few millivolts,the vacuole tending to be the more positive. Evc appeared tobe approximately the same for epidermal, cortical, endodermal,and pericycle cells.  相似文献   

2.
Membrane potential and resistance, each of which was the sumof those of the plasmalemma and tonoplast, measured in the coenocyticthallus of Boergesenia forbesii were 6.7 mv inside positiveand 2.8 k.cm2, respectively. Protoplasm squeezed from the thallus into artificial sea water(ASW) formed numerous spherical bodies, which are termed aplanospore-likecells (simply "spores"). The following electrical propertiesof the "spores" 20–40 hr after squeezing were obtained:potential difference (p.d.) across plasmalemma (Eco) was –66mv (– means inside negative), plasmalemma resistance 665cm2, p.d. across the tonoplast (Evc) +73 mv, and tonoplast resistance2.6 k.cm2. Tenfold increase in external [K+] caused +45 mv changein Eco and +17 mv in Evc. The plasmalemma was entirely depolarizedin Ca++-free ASW or ASW containing Triton X-100. When the "spore" was immersed in potassium-rich (277 mil) ASW,Eco was almost zero and the tonoplast showed two states (I andII, Eve about +70 mv and +20 mv, respectively). Evc went backand forth between the two states spontaneously or when a smallcurrent was applied. In most cases oscillatory changes in Evcoccurred after the lapse of a long time in the K+-rich sea water.Membrane resistances in states I and II were 5 and 9 k.cm2,respectively. (Received July 11, 1977; )  相似文献   

3.
R. Behl  W. Hartung 《Planta》1986,168(3):360-368
Epidermal peels of Valerianella locusta were acid-treated for 1 h at pH 3.9 to kill all cells other than guard cells. These guard-cell preparations were used to explore the steady-state one-way fluxes and the cytoplasmic and vacuolar contents of abscisic acid (ABA). The method of compartmental analysis has been applied. The intracellular ABA concentrations were surprisingly high. At an external pH of 5.8 the cytoplasm contained 1.28 mmol·dm-3 of ABA, twice of the amount which accumulated in the vacuoles (0.57 mmol·dm-3). The fluxes of ABA at the plasmalemma (oc=oc=0.43 fmol · cell –1 · h –1) were higher than those at the tonoplast (cv=vc=0.12 fmol · cell –1 · h –1). Moderate stress (0.1 and 0.3 mol·dm-3 sorbitol in the medium) caused a change in the kinetics of ABA movement. The rate constants of the fluxes from the cytoplasm into the vacuole (cv) and into the apoplast (co) were increased while the rate constant of the flux from the vacuoles into the cytoplasm (vc) was decreased. As a consequence the amount of ABA sequestered in the vacuole remained unchanged; the cytoplasmic ABA content, however, was reduced to only 20% of that found in the control treatments (no sorbitol in the medium). Under moderate stress, one Valerianella guard cell released rapidly about 0.36 fmol·cell-1 to its direct cell-wall space. This surprising result is discussed in regard to rapid stomatal closure under reduced water supply.Abbreviations ABA abscisic acid - FC fusicoccin  相似文献   

4.
Parametric equations describing the total reaction rate in an electrochemical cell containing free enoate reductase are presented and their use in determining optimal cell and electrode dimensions discussed. Immobilized enoate reductase from Clostridium tyrobutyricum DSM 1460 was used for the repetitive stereospecific reduction of (E)-2-methyl-3-phenyl-2-propenoate and (E)-2-methyl-2-butenoate to their respective (R)-enantiomeric saturated products. The reducing equivalents were provided by electrochemically regenerated methylviologen. The enzyme immobilized in calcium alginate was used in two different systems: (a) on cellulose filters packed into a reactor outside the electrochemical cell, and (b) in the electrochemical cell on a carbon felt electrode soaked with the enzyme and alginate before it was cross-linked with calcium ions.Cyclic voltammetry indicated that the ionotropic gel increased the concentration of methylviologen close to the electrode surface. Via immobilization the half life of enoate reductase in the electrochemical cell increased from about 8–350 h of continuous operation.  相似文献   

5.
G. Thiel 《Protoplasma》1994,179(1-2):26-33
Summary The present paper describes the construction and properties of a Pt/Ir-semi-microelectrode and its application as a redoxsensitive electrode in intact cells of the giant algaNitella. For compartmental analysis of the stationary redox-state voltage (ERED), a value reflecting the interaction of the dominant redox couples with a Pt/Ir-electrode, the redox-sensitive electrode was inserted into the vacuole of leaf cells or cytoplasm enriched fragments (CEF) fromNitella internodal cells. After correction for the membrane voltage, measured with a second, conventional voltage electrode, ERED values of+237±93mVand+419±51 mV with respect to a normal H+-electrode were obtained for cytoplasm and vacuole, respectively. The redox-state of the cell culture medium was+604 mV. The steady state ERED in the cytoplasm can be perturbed by experimental treatments: indirect acidification of the cytoplasm by an external pH jump from 7.5 to 5.8 and direct acidification, by acid loading with 5 mM butyrate, both resulted in a positive shift of ERED, i.e., to an increase in cytoplasmic oxidation. At the same time the membrane depolarized electrically following the external pH jump, but hyperpolarized in response to acid loading. The data demonstrate the direct dependence of cytoplasmic redox state on intracellular pH, probably due to enhanced oxidation of protonated redox couples favoured by mass action. The electrical membrane voltage changes were not correlated with the shift in cytoplasmic ERED. This demonstrated that redox energy does not determine the electrical membrane voltage. Cytoplasmic ERED was also affected by photosynthesis. When CEFs were transferred from light to dark, or exposed to 10M 3-(3,4-dichlorophenyl)-1,l-dimethylurea (DCMU), ERED shifted negatively (more reduced) by 6.4±4.5mV or 4.2±2mV, respectively. These data compare favourably with biochemical estimates of cytoplasmic pyridin nucleotides which also show an increase in cytoplasmic reduction in the dark. Therefore, it is unlikely that diffusable reducing equivalents are supplied to the cytoplasm from photosynthetically-active chloroplasts to act as secondary messengers.Abbreviations EM transmembrane voltage - ERED redox-state voltage - E0 midpoint-redox-voltage - APW artificial pond water - CEF cytoplasm enriched fragment  相似文献   

6.
In this study, five series of (E)-6-(4-substituted phenyl)-4-oxohex-5-enoic acids IIb–f (E), (E)-3-(4-(substituted)-phenyl)acrylic acids IIIa–g (E), 4-(4-(substituted)phenylamino)-4-oxobutanoic acids VIa,b,e, 5-(4-(substituted)phenylamino)-5-oxopentanoic acids VIIa,f and 2-[(4-(substituted)phenyl) carbamoyl]benzoic acids VIIIa,e were designed and synthesized. Selected compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumor cell lines. Compound IIf (E) displayed significant inhibitory activity against NCI Non-Small Cell Lung A549/ATCC Cancer cell line (68% inhibition) and NCI-H460 Cancer cell line (66% inhibition). Moreover, the final compounds were evaluated in vitro for their cytotoxic activity on HepG2 Cancer cell line in which histone deacetylase (HDAC) is overexpressed. Compounds IIc (E), IIf (E), IIIb (E), and IIIg (E) exhibited the highest cytotoxic activity against HepG2 human cancer cell lines with IC50 ranging from 2.27 to 10.71 μM. In addition, selected compounds were tested on histone deacetylase isoforms (HDAC1–11). Molecular docking simulation was also carried out for HDLP enzyme to investigate their HDAC binding affinity. In addition, generation of 3D-pharmacophore model and quantitative structure activity relationship (QSAR) models were combined to explore the structural requirements controlling the observed cytotoxic properties.  相似文献   

7.
Annealing experiments on membrane filters were carried out with deoxyribonucleic acids (DNA) from selected strains of the nomen-species of Pseudomonas, Actinobacillus, Chromobacterium, and Micrococcus, with the use of DNA of Pseudomonas pseudomallei and Actinobacillus mallei as reference materials. Under the usual conditions employed in these experiments, the results were not quantitatively reproducible. Incorporation of dimethylsulfoxide (DMSO) into the incubation medium greatly increased differences in comparative binding. DNA binding in agar matrices was examined in the presence and absence of DMSO at various incubation temperatures. It was found that the greatest specificity, stability, and total binding for DNA containing high amounts of guanine and cytosine occurred in the presence of DMSO. Under the most stringent annealing conditions permitted in agar, DNA species from P. pseudomallei and A. mallei in the presence of DMSO demonstrated interspecific relative bindings of 76 to 86% when compared to the homologous reactions. The thermal elution midpoints (Em) of these duplexed interspecific DNA species were quite close to the homologous Em values. The relative bindings of P. multivorans DNA types to either reference DNA ranged between 6 to 27%, and the Em values were 4 to 7 C less than those for the homologous reactions.  相似文献   

8.
The membrane potential measured by intracellular electrodes, Em, is the sum of the transmembrane potential difference (E1) between inner and outer cell membrane surfaces and a smaller potential difference (E2) between a volume containing fixed charges on or near the outer membrane surface and the bulk extracellular space. This study investigates the influence of E2 upon transmembrane ion fluxes, and hence cellular electrochemical homeostasis, using an integrative approach that combines computational and experimental methods. First, analytic equations were developed to calculate the influence of charges constrained within a three-dimensional glycocalyceal matrix enveloping the cell membrane outer surface upon local electrical potentials and ion concentrations. Electron microscopy confirmed predictions of these equations that extracellular charge adsorption influences glycocalyceal volume. Second, the novel analytic glycocalyx formulation was incorporated into the charge-difference cellular model of Fraser and Huang to simulate the influence of extracellular fixed charges upon intracellular ionic homeostasis. Experimental measurements of Em supported the resulting predictions that an increased magnitude of extracellular fixed charge increases net transmembrane ionic leak currents, resulting in either a compensatory increase in Na+/K+-ATPase activity, or, in cells with reduced Na+/K+-ATPase activity, a partial dissipation of transmembrane ionic gradients and depolarization of Em.  相似文献   

9.
The direct electrochemical redox reaction of bovine erythrocyte copper–zinc superoxide dismutase (Cu2Zn2SOD) was clearly observed at a gold electrode modified with a self-assembled monolayer (SAM) of cysteine in phosphate buffer solution containing SOD, although its reaction could not be observed at the bare electrode. In this case, SOD was found to be stably confined on the SAM of cysteine and the redox response could be observed even when the cysteine-SAM electrode used in the SOD solution was transferred to the pure electrolyte solution containing no SOD, suggesting the permanent binding of SOD via the SAM of cysteine on the electrode surface. The electrode reaction of the SOD confined on the cysteine-SAM electrode was found to be quasi-reversible with the formal potential of 65±3 mV vs. Ag/AgCl and its kinetic parameters were estimated: the electron transfer rate constant ks is 1.2±0.2 s−1 and the anodic (αa) and cathodic (αc) transfer coefficients are 0.39±0.02 and 0.61±0.02, respectively. The assignment of the redox peak of SOD at the cysteine-SAM modified electrode could be sufficiently carried out using the native SOD (Cu2Zn2SOD), its Cu- or Zn-free derivatives (E2Zn2SOD and Cu2E2SOD, E designates an empty site) and the SOD reconstituted from E2Zn2SOD and Cu2+. The Cu complex moiety, the active site for the enzymatic dismutation of the superoxide ion, was characterized to be also the electroactive site of SOD. In addition, we found that the SOD confined on the electrode can be expected to possess its inherent enzymatic activity for dismutation of the superoxide ion.  相似文献   

10.
The results of multiyear studies of gas exchange in intact attached leaves of several willow species (Salix sp.) were analyzed. Measurements were performed with a portable Li-6400 infrared gas analyzer both on plants in their natural environment and on rooted cuttings grown in a greenhouse. Individual attached leaves were placed into the leaf chamber where climatic conditions were either similar to or different from those outside the chamber. The maximal rates of net photosynthesis (P n) and transpiration (E) were only observed with the provision that the environmental variables inside and outside the chamber were identical. On rainy or cloudy days, the P n and E values observed under optimum conditions inside the leaf chamber were lower than their potential maxima by 12–18% and 35–45%, respectively. Deviation of temperature in the chamber by 5–7°C from the external level and fluctuations of ambient temperature affected P n but not E rates of tested leaves. Variations in relative air humidity in the chamber directly influenced E but had no effect on P n of attached leaves. It was shown that the maximum rates of gas exchange in the attached willow leaf could be only attained by providing optimum conditions for the whole plant.  相似文献   

11.
Cyclodextrin (CD) is a well known drug carrier and excipient for enhancing aqueous solubility. CDs themselves are anticipated to have low membrane permeability because of relatively high hydrophilicity and molecular weight. CD derivatization with 17-beta estradiol (E2) was explored extensively using a number of different click chemistries and the cell membrane permeability of synthetic CD–E2 conjugate was explored by cell reporter assays and confocal fluorescence microscopy. In simile with reported dendrimer–E2 conjugates, CD–E2 was found to be a stable, extranuclear receptor selective estrogen that penetrated into the cytoplasm.  相似文献   

12.
Recent studies by Buhi et al. have demonstrated that estrogen (E2) is responsible for the induction of de novo synthesis and secretion of certain oviductal secretory proteins (OSP) and inhibition of other OSP in porcine oviductal explant cultures. The present work was undertaken to evaluate the effect of E2-treated oviductal epithelial cell coculture on the development of early porcine embryos derived from in vitro matured and fertilized oocytes. In vitro synthesis of secretory proteins by E2-treated oviductal cells used for coculture was also investigated by one-dimensional (1D) and two-dimensional (2D) sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE). The results showed that the cleavage rate was significantly enhanced by coculturing fertilized eggs with E2-treated oviductal epithelial cells. The in vitro protein synthetic pattern of oviductal secretory proteins was influenced by E2 treatment. These variations included the disappearance of one protein (82 000 Mr) and the appearance of another (33 000 Mr) in the E2-treated group as assessed by 1D-SDS-PAGE. Additional proteins of Mr 97 000 and an Mr 36 000–45 000 complex were increased in abundance by the E2 treatment. Analyses by 2D-SDS-PAGE revealed three major E2-dependent proteins, of Mr 45 000 (pI 5.5), 43 000 (pI 5.5) and a 36 000–45 000 Mr (pI 4.8) protein complex, whereas polypeptides of Mr 97 000 (pI 5.1), 36 000 (pI 8.0) and 25 000 (pI 6.8) were inhibited by E2 treatment. The results demonstrated that porcine epithelial cell protein synthetic patterns are influenced by E2 treatment and that estradiol treatment of oviductal cells may increase the rate of zygote cleavage during early development in vitro in pigs.  相似文献   

13.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

14.
Efflux and Influx of Erythrocyte Water   总被引:1,自引:1,他引:0       下载免费PDF全文
Rabbit erythrocytes were washed in buffered NaCl solutions isotonic with rabbit serum (Δt -0.558°C.) and suspended in buffered NaCl solutions of tonicity equidistant from intracellular tonicity (Δt = -0.558°C. ± 0.112°C.) of varying pH and incubated at varying temperatures. After incubation, the freezing point depression (Δt) was measured on the supernatant. Change in the Δt measured change in the water content of the extracellular solutions—water being withdrawn by erythrocytes (WI) from the hypotonic solutions and added (WE) to the hypertonic solutions. WE was always less than WI and was inversely proportional to the pH in the range 6.5–8.0. WE was significantly increased by lowering the temperature of the cell suspension to 4°C. WI was increased by raising or lowering the pH or raising the temperature of the cell suspension. WE x WIk. WE and WI were affected differently by changes in pH and temperature. It was concluded that WE and WE were probably under different physicochemical control.  相似文献   

15.
This work probes the relationship between stilbene functional group and biological activity. The biological activity of synthesized stilbenes (E)-4,4′-dicyanostilbene, (E)-4,4′-diacetylstilbene, (E)-4,4′-diaminostilbene, a novel stilbene, 1,1′-(vinylenedi-p-phenylene)diethanol, and (E)-stilbene was assessed at biologically relevant nanomolar concentrations using the MTS cell viability assay in differentiated PC-12 cells under optimal culture conditions and conditions of oxidative stress. Under optimal culture conditions the synthesized stilbene derivatives were found to be non-toxic to cells at concentrations up to 10 μg/ml. To mimic oxidative stress, the activity of these stilbene derivatives in the presence of 0.03% H2O2 was investigated. Stilbene derivatives with electron-withdrawing functional groups were 2–3 times more toxic than the H2O2 control, indicating that they may form toxic metabolites in the presence of H2O2. Fluorescence data supported that stilbene derivatives with electron-withdrawing functional groups, (E)-4,4′-dicyanostilbene and (E)-4,4′-diacetylstilbene, may react with H2O2. In contrast, the stilbene derivative with a strong electron-donating functional group, (E)-4,4′-diaminostilbene, rescued neurons from H2O2-induced toxicity. The DPPH assay confirmed that (E)-4,4′-diaminostilbene is able to scavenge free radicals. These data indicate that the Hammett value of the functional group correlates with the biological activity of (E)-4,4′-disubstituted stilbenes in differentiated PC-12 cells.  相似文献   

16.
A general procedure for the stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of (E)-2-phenylethenylboronic acid pinacol ester with aryl bromides was investigated. (E)-2-Phenylethenylboronic acid pinacol ester was prepared by 9-BBN-catalyzed hydroboration of phenylacetylene with pinacolborane. This reagent undergoes facile palladium-catalyzed cross-coupling with a diverse set of aryl bromides to provide the corresponding (E)-stilbene derivatives in moderate to good yield. The use of the sterically bulky t-Bu3PHBF4 ligand was crucial to the successful coupling of electron-rich and electron-poor aryl bromides. Complete stereochemical retention of the (E)-2-phenylethenylboronic acid pinacol ester alkene geometry was observed in all of the (E)-stilbene derivatives synthesized.  相似文献   

17.
On the basis of stereo specific information obtained from crystal structures of CDK2, indole and chromene analogues were designed by suitably substituting the pharmacophores on their moiety and docked with target protein for calculating binding affinities. The binding affinities are represented in glide score. (5E)-5-[(1-methyl-1H-indol-3-yl)methylidene]-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I1), (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were selected for synthesis and biological testing based on vital interactions. (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide(I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were proved to be active against MCF-7 and HeLa cell lines.  相似文献   

18.
A stable suspension of carbon nanotube (CNT) can be obtained by dispersing the CNT in the solution of the surfactant cetyltrimethylammonium bromide. CNT has promotion effects on the direct electron transfer of hemoglobin (Hb), which was immobilized onto the surface of CNT. The direct electron transfer rate of Hb was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of Hb, with the formal potential (E0) at about −0.343 V (vs. saturated calomel electrode) in the phosphate buffer solution (pH 6.8). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of formal potential (E0) were estimated. The dependence of E0 on solution pH indicated that the direct electron transfer reaction of Hb is a one-electron transfer coupled with a one-proton transfer reaction process. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity to the reduction of H2O2. The electrocatalytic current was proportional to the concentration of H2O2 at least up to 20 mM.  相似文献   

19.
For isolated single cells on a substrate, the intracellular stiffness, which is often measured as the Young’s modulus, E, by atomic force microscopy (AFM), depends on the substrate rigidity. However, little is known about how the E of cells is influenced by the surrounding cells in a cell population system in which cells physically and tightly contact adjacent cells. In this study, we investigated the spatial heterogeneities of E in a jammed epithelial monolayer in which cell migration was highly inhibited, allowing us to precisely measure the spatial distribution of E in large-scale regions by AFM. The AFM measurements showed that E can be characterized using two spatial correlation lengths: the shorter correlation length, lS, is within the single cell size, whereas the longer correlation length, lL, is longer than the distance between adjacent cells and corresponds to the intercellular correlation of E. We found that lL decreased significantly when the actin filaments were disrupted or calcium ions were chelated using chemical treatments, and the decreased lL recovered to the value in the control condition after the treatments were washed out. Moreover, we found that lL decreased significantly when E-cadherin was knocked down. These results indicate that the observed long-range correlation of E is not fixed within the jammed state but inherently arises from the formation of a large-scale actin filament structure via E-cadherin-dependent cell-cell junctions.  相似文献   

20.
This work investigates the role of charge of the phosphorylated aspartate, Asp369, of Na+,K+-ATPase on E1E2 conformational changes. Wild type (porcine α1/His101), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5′-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S. J. (1980) J. Bioenerg. Biomembr. 12, 111–136). One central finding is that the D369N/D369A mutants are strongly stabilized in E2 compared with wild type and D369E or T212A mutants. Stabilization of E2(Rb) is detected by a reduced K0.5Rb for the Rb+-induced E1E2(2Rb) transition. The mechanism involves a greatly reduced rate of E2(2Rb) → E1Na with no effect on E1E2(2Rb). Lowering the pH from 7.5 to 5.5 strongly stabilizes wild type in E2 but affects the D369N mutant only weakly. Thus, this “Bohr” effect of pH on E1E2 is due largely to protonation of Asp369. Two novel effects of phosphate and vanadate were observed with the D369N/D369A mutants as follows. (a) E1E2·P is induced by phosphate without Mg2+ ions by contrast with wild type, which requires Mg2+. (b) Both phosphate and vanadate induce rapid E1E2 transitions compared with slow rates for the wild type. With reference to crystal structures of Ca2+-ATPase and Na+,K+-ATPase, negatively charged Asp369 favors disengagement of the A domain from N and P domains (E1), whereas the neutral D369N/D369A mutants favor association of the A domain (TGES sequence) with P and N domains (E2). Changes in charge interactions of Asp369 may play an important role in triggering E1P(3Na) ↔ E2P and E2(2K) → E1Na transitions in native Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号