首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hepatic lesion produced as a result of oxidative stress is of wide occurrence. In the present study, the effect of tungsten on liver necrosis and fulminant hepatic failure (FHF) has been studied in rats treated with various compounds known to produce oxidative stress. Supplementation of animals with sodium tungstate for 7 weeks before the induction of liver injury by chemicals including thioacetamide (TAA), carbon tetrachloride (CCl(4)), or chloroform (CHCl(3)) could protect progression of hepatic injury. Various biochemical changes associated with liver damage and oxidative stress were measured. Hepatic malondialdehyde content, endogenous tripeptide, and reduced glutathione were measured as oxidative stress markers. The activity of xanthine oxidase, which generates reactive oxygen species (ROS) as a by-product, was also determined and found to be perturbed. Tungsten supplementation to rats caused a significant decrease in lipid peroxidation and lowered the levels of the biochemical markers of hepatic lesions produced by TAA, CCl(4) (CCl(4)), or CHCl(3). Tungsten could also cause an increase in the survival rate in rats receiving lethal doses of TAA, CCl(4), or CHCl(3). The protective effect of tungsten, however, is suggested to be limited to the conditions where the hepatic lesion is reported to be due to the generation of ROS. The progression of liver injury produced by the compounds causing oxidative stress without initiating the generation of free radicals such as bromobenzene (BB), or acetaminophen (AAP), could not be inhibited by tungsten. The possible mechanism explaining the role of oxyanionic form of tungsten in free radical-induced hepatic lesions is discussed.  相似文献   

2.
Chronic liver disease promotes hepatocellular injury involving apoptosis and triggers compensatory regeneration that leads to the activation of quiescent stellate cells in the liver. The deposition of extracellular matrix from activated myofibroblasts promotes hepatic fibrosis and the progression to cirrhosis with deleterious effects on liver physiology. The role of apoptosis signaling pathways in the development of fibrosis remains undefined. The aim of the current study was to determine the involvement of the caspase-8 homologue cellular FLICE-inhibitory protein (cFLIP) during the initiation and progression of fibrosis. Liver injury and fibrosis from carbon tetrachloride (CCl(4)) and thioacetamide (TAA) were examined in mice exhibiting a hepatocyte-specific deletion of cFLIP (flip(-/-)). Acute liver injury from CCl(4) and TAA were enhanced in flip(-/-) mice. This was accompanied by increased activation of caspase-3 and -9, pronounced phosphorylation of JNK, and decreased phosphorylation of Erk. Deletion of the cJun NH(2)-terminal kinase 2 (JNK2) in flip(-/-) mice protected from injury. Hepatic fibrosis was increased at baseline in 12-wk-old flip(-/-) mice, and progression of fibrosis from TAA was accelerated compared with the wild type. In conclusion, deletion of cFLIP in hepatocytes leads to increased fibrosis and accelerated fibrosis progression. This is accompanied by increased injury involving the activation of caspases and JNK2. Thus predisposition to liver injury involving increased hepatocellular apoptosis is a critical mediator of accelerated fibrogenesis, and prevention of liver injury will be a most important measure for patients with chronic liver disease.  相似文献   

3.
Ali S  Pawa S  Naime M  Prasad R  Ahmad T  Farooqui H  Zafar H 《Life sciences》2008,82(13-14):780-788
The study was designed to investigate the role of molybdenum iron-sulfur flavin hydroxylases in the pathogenesis of liver injuries induced by structurally and mechanistically diverse hepatotoxicants. While carbon tetrachloride (CCl4), thioacetamide (TAA) and chloroform (CHCl3) inflict liver damage by producing free radicals, acetaminophen (AAP) and bromobenzene (BB) exert their effects by severe glutathione depletion. Appropriate doses of these compounds were administered to induce liver injury in rats. The activities of the Mo-Fe-S flavin hydroxylases were measured and correlated with the biochemical markers of hepatic injury. The activity levels of the anti-oxidative enzymes and glutathione redox cycling enzymes were also determined. The treatment of rats with the hepatotoxins that inflict liver injury by generating free radicals (CCl4, TAA, CHCl3) had elevated activity levels of hepatic Mo-Fe-S flavin hydroxylases (p<0.05). Specific inhibition of these hydroxylases by their common inhibitor, sodium tungstate, suppresses biochemical and oxidative stress markers of hepatic tissue damage. On the contrary, Mo-Fe-S flavin hydroxylases did not show any change in animals receiving AAP and BB. Correspondingly, sodium tungstate could not attenuate damage in AAP and BB treated groups of rats. The study concludes that Mo-Fe-S hydroxylases contribute to the hepatic injury inflicted by free radical generating agents and does not play any role in hepatic injury produced by glutathione depleting agents. The study has implication in understanding human liver diseases caused by a variety of agents, and to investigate the efficacy of the inhibitors of Mo-Fe-S flavin hydroxylases as potential therapeutic agents.  相似文献   

4.
Central neuropeptides play important roles in many physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Central injection of corticotropin-releasing factor (CRF) aggravates carbon tetrachloride (CCl4)-induced acute liver injury through the sympathetic nervous pathway in rats. However, still nothing is known about a role of endogenous neuropeptides in the brain in hepatic pathophysiological regulations. Involvement of endogenous CRF in the brain in CCl4-induced acute liver injury was investigated by centrally injecting a CRF receptor antagonist in rats. Male fasted Wistar rats were injected with CRF receptor antagonist alpha-helical CRF-(9-41) (0.125-5 microg) intracisternally just before and 6 h after CCl4 (2 ml/kg) administration, and blood samples were obtained before and 24 h after CCl4 injection for measurement of hepatic enzymes. The liver sample was removed 24 h after CCl4 injection, and histological changes were examined. Intracisternal alpha-helical CRF-(9-41) dose dependently (0.25-2 microg) reduced the elevation of alanine aminotransferase and aspartate aminotransferase levels induced by CCl4. Intracisternal alpha-helical CRF-(9-41) reduced CCl4-induced liver histological changes, such as centrilobular necrosis. The effect of central CRF receptor antagonist on CCl4-induced liver injury was abolished by sympathectomy and 6-hydroxydopamine pretreatment but not by hepatic branch vagotomy or atropine pretreatment. These findings suggest the regulatory role of endogenous CRF in the brain in experimental liver injury in rats.  相似文献   

5.
CCl4致小鼠肝损伤中几种免疫介质含量变化的研究   总被引:3,自引:0,他引:3  
本文通过研究CCl4致小鼠肝损伤组织匀浆和血浆一些免疫介质含量的变化以探讨这些免疫介质在CCl4诱发肝损伤过程中作用机制。分别选用30只健康成年小鼠,雌雄各半,随机分成对照组和CCl4负荷组,每组15只。通过腹腔注射CCl4诱发肝损伤后,分别在第2、4、6周检测肝组织匀浆cAMP、cGMP和MDA及血浆IL-2、TNF-α水平的变化。结果显示,在整个实验期内,CCl4组肝组织匀浆cAMP水平均低于或明显低于对照组;cGMP在实验第2周后,高于或显著高于对照组;cAMP/cGMP比值呈现下降趋势,并低于或明显低于对照组;MDA含量明显高于对照组。在整个实验期内,CCl4组血浆IL-2水平下降或显著下降;TNF-α水平则均高于或显著高于对照组。结果提示,CCl4负荷诱发免疫介质cAMP、cGMP、TNF-α和IL-2发生剧烈变化,在介导肝损伤过程中可能起重要作用。  相似文献   

6.
We examined the effect of L-tryptophan (Trp) administration on the reversion of CCl(4)-induced chronic liver injury after hepatotoxicant withdrawal in rats. When rats treated with CCl(4) twice a week for 6 weeks were released from CCl(4) treatment for 2 weeks, there was an incomplete reversion of liver injury. The reversion was enhanced by 2 weeks of daily intraperitoneal administration of Trp (50 mg/kg body weight), starting just after CCl(4) withdrawal. There were increases in the levels of thiobarbituric acid reactive substances, an index of lipid peroxidation, Ca(2+), triglycerides, and Trp, and decreases in tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations in the liver of rats treated with CCl(4) for 6 weeks. Serum albumin concentrations and in vitro hepatic protein synthesis activity did not change in the CCl(4)-treated rats. The changes in the CCl(4)-treated rats were partially attenuated 2 weeks after CCl(4) withdrawal. The attenuation was enhanced by 2 weeks of daily Trp administration. The increases in hepatic thiobarbituric acid reactive substances and triglycerides and the decreases in hepatic tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations observed 2 weeks after CCl(4) withdrawal were almost completely attenuated by Trp administration. In vitro hepatic protein synthesis in CCl(4)-treated and untreated rats was increased by 2 weeks of daily Trp administration. These results indicate that Trp administration promotes the reversion of pre-established chronic liver injury in rats treated with CCl(4,) and suggest that Trp exerts this effect by enhancing the improvement of several parameters of liver dysfunction associated with chronic liver injury and by stimulating hepatic protein synthesis.  相似文献   

7.
Haridradi ghrita, a ghee based polyherbal formulation, (50, 100, 200 and 300 mg/kg) significantly lowered marker enzymes (SGPT, SGOT, ALP) and bilirubin in serum and liver peroxide, superoxide dismutase and catalase in liver homogenate following CCl4 (0.7 ml/kg, ip) toxicity. The protective effect was further supported by reversal of CCl4 induced histological changes. The results demonstrate significant hepatoprotective action of H. ghrita in CCl4 damaged rats.  相似文献   

8.
We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.  相似文献   

9.
10.
Characteristics of thioacetamide (TAA)-induced liver cirrhosis in rat was observed for 120 days after TAA withdrawal as part of the radiobiological study of partial liver irradiation on TAA-induced cirrhotic rats. The natural process focused on cirrhosis and regeneration was recorded as a baseline condition for the interpretation of the outcome of the partial liver irradiation study. Cirrhosis in rats was successfully induced by drinking 0.03% TAA water orally for 29 weeks with a modeling rate of 96%. After establishment of the cirrhosis model, the rats were observed for 120 days upon TAA withdrawal to investigate the dynamic changes of cirrhosis and regeneration. The following characteristics were observed: (1) Histological changes; (2) Liver functions; (3) Cirrhosis: trichrome stain, quantification of hydroxyproline in hydrolysed liver tissue and TGF-β1; (4) Liver regeneration: liver index, hepatocyte mitotic index (MI), hepatocyte proliferation index (PI) by flow cytometry, PCNA labeling index (LI) by IHC and expression of PCNA mRNA; and (5) Growth factors: serum HGF, VEGF, TGF-α, and IL-6. After TAA withdrawal, gradual improvement in liver functions was noted with decreases of ALT, AST, and ALP, and increase of PA. The resolution of cirrhosis was evident by histological improvement with attenuation of collagen fiber and decrease of TGF-β1 IHC index, and also decrease of trichrome stain and hydroxyproline content. However, cirrhosis was still existed on 120 days after TAA withdrawal. Significant deceleration of liver regeneration was demonstrated with TAA withdrawal, evidenced by decrease of MI and PI, reduced expression of PCNA mRNA and PCNA LI. In conclusion, upon TAA withdrawal hepatic cirrhosis was continuously resolved, but persisted up to 120 days, and liver regeneration was significantly decelerated.  相似文献   

11.
Malotilate is a new drug suggested for use in chronic liver diseases. It is shown here to prevent liver damage caused by CCl4. The concomitant administration of malotilate with CCl4 significantly decreased hydroxyproline accumulation in the liver, liver prolyl 4-hydroxylase and liver and serum galactosylhydroxylysyl glucosyltransferase activities. However, it had no effect on the daily urinary hydroxyproline excretion or the hydroxyproline content of the skin, liver or lungs in normal young growing rats. It also had no specific inhibitory effect on hydroxyproline synthesis or secretion in fibroblast cultures, and did not affect the amount of procollagen-alpha 1(I)-specific mRNAs in these cultures. Thus it seems to have no direct inhibitory effect on collagen metabolism. In addition to inhibition of liver collagen accumulation, malotilate was also able to prevent the development of morphological changes in the liver such as focal necrosis, fatty infiltration and inflammatory changes. It also normalized almost completely the standard liver-function tests. It is possible that malotilate may prevent excessive collagen deposition by inhibiting the inflammation caused by CCl4-induced liver damage.  相似文献   

12.
Effects of the administration of trivalent chromium (Cr(III)) to mice and the activation of carbon tetrachloride (CCl4) to form trichloromethyl radicals (.CCl3) in the liver were studied. The lipid peroxidation in liver microsomes induced in vitro by CCl4 in the presence of NADPH was decreased by the preadministration of Cr(III) to mice. The activity of NADPH-cytochrome C reductase, which presumably catalyzes the formation of .CCl3 from CCl4 in liver microsomes, was depressed by Cr(III) administration and kept at a level lower than that of the control group for at least 2 hr after CCl4 dosing. Furthermore, the frequency of appearances of ESR signals of .CCl3 in the liver homogenate of mice 1 min after CCl4 administration was markedly decreased by Cr(III) preadministration, similarly to DL-alpha-tocopherol. These results suggest that Cr(III) preadministered to mice decreases the formation of .CCl3 from CCl4, an activating process of CCl4, in the liver, presumably by scavenging the radical.  相似文献   

13.
Magnetic resonance imaging (MRI) and localized magnetic resonance spectroscopy (MRS) were used to study the effects of a single dose of ethanol, given 18 h prior to experiments, on CC14-induced acute hepatotoxicity in rats in situ. Localized edema in the centrilobular region of the liver, following exposure to ethanol and CCl4, was detected by 1H-MRI techniques. The edema was characterized by a volume selective spectroscopy (VOSY) method, which measured an increase in water concentration from ethanol and CCl4-treated rat livers, in comparison to control livers. Electron microscopy (EM) of the high intensity regions of the ethanol/CCl4 treated liver sections revealed dramatic subcellular changes such as fragmentation of the granular endoplasmic reticulum (ER), formation of large vacuoles and lipid droplets in the cytoplasmic matrix and extensive swelling of the mitochondria as well as disruption of the cristae. Pretreatment with alpha-phenyl tert-butyl nitrone (PBN), a free radical spin trap, prior to halocarbon exposure, was found to reduce the CC14-mediated high intensity region in the liver images. Electron microscopy of the PBN pretreated CCl4 exposed rat liver sections revealed only minor observable differences in subcellular organization, such as some swelling of the mitochondria, when compared to controls. In addition, these data suggest that ethanol may potentiate CCl4 hepatotoxicity by increased formation of free radical intermediates. Inhibition of the CCl4-induced edematous response in rat liver by PBN demonstrates that free radical intermediates, arising from the metabolism of CCl4, are possibly the causal factor in the initiation of the edema.  相似文献   

14.
The role of thromboxane A2 [TxA2] in liver injury in mice   总被引:1,自引:0,他引:1  
The role of thromboxane A2 (TxA2) in CCl4-induced liver disease was investigated in mice. Significant elevation of TxB2 in the liver was observed 6 hours after the injection of CCl4. Administration of OKY-046, a selective TxA2 synthetase inhibitor (10 and 50 mg/kg) and ONO-3708, a TxA2 receptor antagonist, (0.5, 1 and 2 mg/Kg) suppressed the elevation of serum GOT and GPT levels and histopathological changes of the liver. In addition, OKY-046 inhibited the elevation of TxB2 in the liver. When U-46619, a stable TxA2 mimetic was injected i.v. into the mice, clear elevation of serum GOT and GPT levels and histopathological score of the liver were observed. These results suggest that TxA2 play a role for the onset of CCl4-induced liver injury in mice.  相似文献   

15.
Protective effect of colchiceine against acute liver damage   总被引:1,自引:0,他引:1  
Pretreatment of rats with colchiceine (10 micrograms/day/rat) for seven days protected against CCl4-induced liver damage. CCl4 intoxication was demonstrated histologically and by increased serum activities of alanine amino transferase (ALT), alkaline phosphatase (Alk. Phosph.) gamma glutamyl transpeptidase (GGTP), bilirubins and decreased activity of glucose-6-phosphatase (G-6Pase). Furthermore, an increase in liver lipid peroxidation and a decrease in plasma membrane GGTP and Alk. Phosph. activities were found. Colchiceine increased 1.5-fold the LD50 of CCl4 and prevented the release of intracellular enzymes as well as the decrease in GGTP and Alk. Phosph. activities in plasma membranes. It also completely prevented the lipid peroxidation induced by CCl4 and limited the extent of the histological changes.  相似文献   

16.
Cell-cycle induction in hepatocytes protects from prolonged tissue damage after toxic liver injury. Early growth response (Egr)-1(-/-) mice exhibit increased liver injury after carbon tetrachloride (CCl(4)) exposure and reduced TNF-α production. Because TNF-α is required for prompt cell-cycle induction after liver injury, here, we tested the hypothesis that Egr-1 is required for timely hepatocyte entry into the cell cycle after CCl(4)-induced liver injury. Acute liver injury was induced by a single injection of CCl(4). Assays were employed to assess indices of the cell cycle in liver after CCl(4) exposure. Bromodeoxyuridine incorporation peaked in wild-type mice at 48 h after CCl(4) but was reduced by 80% in Egr-1(-/-) mice. Proliferating-cell nuclear-antigen immunohistochemistry revealed blocks in cell-cycle entry and progression to DNA synthesis in Egr-1-deficient mice 48 h after CCl(4). Cyclin D, important for G0/G1 progression, was reduced at baseline and 36 h after CCl(4). Cyclin E1, required for G1/S-phase transition, was reduced in Egr-1(-/-) mice 24 and 48 h after CCl(4) exposure and was associated with reduced phosphorylation of the retinoblastoma protein. Proliferation in Egr-1(-/-) mice was delayed, rather than blocked, because indices of cell-cycle progression were restored 72 h after CCl(4) exposure. We concluded that Egr-1 was required for prompt cell-cycle entry (G0- to G1-phase) and G1/S-phase transition after toxic liver injury. These data support the hypothesis that Egr-1 provides hepatoprotection in the CCl(4)-injured liver, attributable, in part, to timely cell-cycle induction and progression.  相似文献   

17.
CCl(4)-induced metabonomic changes have been extensively studied for mammalian liver, and such changes have not been reported for other organs. To investigate the CCl(4) effects on other organs, we analyzed the CCl(4)-induced metabonomic changes in rat kidney, lung, and spleen using (1)H NMR-based metabonomics approaches with complementary information on serum clinical chemistry and histopathology. We found that acute CCl(4) exposure caused significant level elevation for creatine and decline for glucose, taurine, trimethylamine, uridine, and adenosine in rat kidney. CCl(4)-treatment also induced elevation of amino acids (isoleucine, leucine, valine, threonine, alanine, lysine, ornithine, methionine, tyrosine, phenylalanine, and histidine), creatine, and betaine in rat lung together with depletion of glycogen, glucose, taurine, glycine, and hypoxanthine. Furthermore, CCl(4) caused elevation of lactate, alanine, betaine, and uracil in rat spleen accompanied with decline for glucose, choline, and hypoxanthine. These observations indicated that CCl(4) caused oxidative stresses to multiple rat organs and alterations of their functions including renal osmotic regulations, accelerated glycolysis, and protein and nucleotide catabolism. These findings provide essential information on CCl(4) toxicity to multiple rat organs and suggest that systems toxicological views are required for metabonomic studies of toxins by taking many other organs into consideration apart from so-called targeted ones.  相似文献   

18.
Disturbed cellular calcium homeostasis has been observed during CCl4 poisoning, with an increase in calcium content 1 h after administration. Intracellular increase of calcium may be expected to alter membrane/cytosol distribution of calmodulin (CaM). This paper investigates changes in rat liver subcellular CaM distribution 30 min, 1 h and 2 h after CCl4 intoxication. The whole liver value remained unchanged, whereas the nuclear fraction increased and the microsomal and cytosolic fraction decreased. This may suggest that CaM is involved in the several liver cell alterations caused by CCl4 poisoning.  相似文献   

19.
C C Shih  Y W Wu  W C Lin 《Phytomedicine》2005,12(6-7):453-460
The aim of this study was to investigate the effects of aqueous extract of Anoectochilus formosanus (AFE) on liver fibrogenesis in carbon tetrachloride (CCl4)-induced cirrhosis. Fibrosis was induced in rats by oral administration of CCl4 (20%, 0.5 ml/rat, p.o.) twice a week for 8 weeks. AFE (0.5 and 2.0 g/kg, p.o., daily for 8 weeks) was administered to rats simultaneously. AFE showed reducing actions on the elevated levels of GOT and GPT caused by CCl4. Liver fibrosis in rats induced by CCl4 led to the drop of serum albumin concentration; the AFE increased the albumin concentration. The CCl4-induced liver fibrosis markedly caused liver atrophy and splenomegalia, while AFE increased the liver weight, and decreased the spleen weight. The CCl4-induced liver fibrosis decreased the protein content, and increased collagen contents in rat's liver. AFE significantly increased the contents of protein and reduced the amount of collagen in the liver. In CCl4-treated rats, glutathione concentrations of liver were not affected. AFE significantly increased liver glutathione concentrations. All these results clearly demonstrate that AFE can reduce the liver fibrogensis in rats induced by CCl4.  相似文献   

20.
Among the physico-chemical methods that can be used to investigate induced peroxidation in living cells, Fourier transform infrared (FT-IR) spectroscopy appears to be a valuable technique as it is non-destructive and sensitive for monitoring changes in the vibrational spectra of samples. We examined microsomal fractions from rat liver and brain by FT-IR to study the effect of radical aggression induced in vivo by carbon tetrachloride (CCl4). The length of the acyl chains was increased as a consequence of peroxidation induced by the xenobiotic. Moreover, an enhanced level of cholesterol esters and an increase in phospholipids were observed in the liver and the brain, respectively. The conformational structure of the membrane proteins was changed in both the liver and the brain. In the polysaccharide region, we observed an important loss in glucidic structures, such as a decrease in liver glycogen and in some brain glycolipids. These alterations are probably due to the interactions between cells and CCl4 and the metabolic changes caused by CCl4. Thus, FT-IR spectroscopy appears to be an useful tool and an accurate means for rapidly investigating the in vivo biochemical alterations induced by CCl4 in microsomes, and for correlating them with biochemical and physiological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号