共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous work has shown that actin binds specifically and saturably to liver membranes stripped of endogenous actin (Tranter, M. P., S. P. Sugrue, and M. A. Schwartz. 1989. J. Cell Biol. 109:2833-2840). Scatchard plots of equilibrium binding data were linear, indicating that binding is not cooperative, as would be expected for F- or G-actin. To determine the state of membrane-bound actin, we have analyzed the binding of F- and G-actin to liver cell membranes. G-actin in low salt depolymerization buffer and EF-actin, a derivative that polymerizes very poorly in solution, bind to liver cell membranes as well as untreated actin in polymerization buffer. Phalloidin-stabilized F-actin binds, but to a lesser extent. The binding of F- and G-actins are mutually competitive and are inhibited by ATP, suggesting that both forms of actin bind to the same sites. For untreated actin in polymerization buffer, the time course of binding is biphasic, with an initial rapid component which is followed by a plateau phase, then a second, slower component. The binding kinetics of pure F-actin and pure G-actin are both monophasic and match the fast and slower components, respectively, of untreated actin. In the reconstituted system, membrane-bound actin does not stain with rhodamine-phalloidin, nor are actin filaments detected by EM. Distinct regions of amorphous material, however, are visible, which stain with an anti-actin antibody. The exact nature of this material has yet to be determined. A model of actin binding is presented. 相似文献
2.
Ari Franco-Cea 《Developmental biology》2010,345(1):64-1856
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development. 相似文献
3.
Catherine Devine Strader Elias Lazarides Michael A. Raftery 《Biochemical and biophysical research communications》1980,92(2):365-373
SDS-polyacrylamide gel electrophoresis of acetylcholine receptor from electroplax membrane fragments shows, in addition to the four receptor subunits of 40,000, 50,000, 60,000 and 65,000 daltons, other components of apparent molecular weights 43,000, 47,000 and 90,000 daltons. In this study deoxyribonuclease I inhibitory activity has been used to identify actin in receptor-enriched membranes and affinity chromatography on a deoxyribonuclease I agarose column has been used to purify this protein from the membrane preparations. In addition the membrane protein components have been analyzed by electrophoresis on a series of SDS-polyacrylamide gels of varying acrylamide concentrations. Evidence is presented that actin is a component of most preparations of receptor-enriched membrane fragments, having an apparent molecular weight of 47,000 daltons, and is distinct from the 43,000 dalton protein. 相似文献
4.
A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions. 相似文献
5.
Compensatory endocytosis follows regulated exocytosis in cells ranging from eggs to neurons, but the means by which it is accomplished are unclear. In Xenopus eggs, compensatory endocytosis is driven by dynamic coats of assembling actin that surround and compress exocytosing cortical granules (CGs). We have identified Xenopus laevis myosin-1c (XlMyo1c) as a myosin that is upregulated by polyadenylation during meiotic maturation, the developmental interval that prepares eggs for fertilization and regulated CG exocytosis. Upon calcium-induced exocytosis, XlMyo1c is recruited to exocytosing CG membranes where actin coats then assemble. When XlMyo1c function is disrupted, actin coats assemble, but dynamic actin filaments are uncoupled from the exocytosing CG membranes such that coats do not compress, and compensatory endocytosis fails. Remarkably, there is also an increase in polymerized actin at membranes throughout the cell. We conclude that XlMyo1c couples polymerizing actin to membranes and so mediates force production during compensatory endocytosis. 相似文献
6.
7.
Membranes were prepared from lysosomes purified 80-fold by centrifugation in a discontinuous metrizamide gradient. When salt- washed membranes were combined with rabbit muscle actin, an increase in viscosity could be measured using a falling ball viscometer. The lysosomal membrane-actin interaction was actin- and membrane- concentration dependent and appeared to be optimal under presumed physiological conditions (2 mM MgCl2, 1 mM MgATP, neutral pH, and free calcium concentration less than 10(-8) M). The actin cross-linking activity of the membrane was optimal at pH 6.4. The interaction was maximal between 10(-7) and 10(-9) M free calcium ions and inhibited by approximately 50% at concentrations of calcium greater than 0.5 x 10(- 7) M. The actin-lysosomal membrane interaction was destroyed if the membranes were pretreated with Pronase, or if the membranes were purified in the absence of protease inhibitors. The interaction was not destroyed if membranes were washed with high salt or extracted with KCl and urea. In addition, a sedimentation assay for the actin-lysosomal membrane interaction was also performed to corroborate the viscometry data. The results suggest the existence of an integral lysosomal membrane actin-binding protein. 相似文献
8.
Spectrin stimulates the association of F-actin with erythrocyte inside-out vesicles. Although inside-out vesicles are nearly devoid of two of the three major cytoskeletal proteins, spectrin and actin, they retain nearly all of the cytoskeletal protein designated band 4.1. Inside-out vesicles which have been substantially depleted of band 4.1 by extraction in 1 M KCl, 0.4 M urea and then reconstituted with spectrin show a markedly diminished ability to bind actin by comparison with vesicles containing normal amounts of band 4.1. This diminution is not due to an impaired ability of the vesicles to bind spectrin. Addition of purified band 4.1 to vesicles either before or after they have been reconstituted with spectrin restores their actin binding capacity to near normal levels as does addition of a spectrin-band 4.1 complex prepared by sucrose gradient centrifugation. Band 4.1 bound to vesicles in the absence of added spectrin has no effect on actin binding. Our results suggest that a spectrin band 4.1 complex is responsible for binding actin to erythrocyte membranes. 相似文献
9.
10.
The polymerization of actin: II. how nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes 总被引:3,自引:13,他引:3
下载免费PDF全文

LG Tilney 《The Journal of cell biology》1976,69(1):51-72
At an early stage in spermiogenesis the acrosomal vacuole and other organelles including ribosomes are located at the basal end of the cell. From here actin must be transported to its future location at the anterior end of the cell. At no stage, in the accumulation of actin in the periacrosomal region is the actin sequested in a membrane-bounded compartment such as a vacuole or vesicle. Since filaments are not present in the periacrsomoal region during the accumulation of the actin even though the fixation of these cells is sufficiently good to distinguish actin filaments in thin section, the actin must accumulate in the nonfilamentous state. 相似文献
11.
Actin-membrane interactions have been studied using purified liver plasma membranes and muscular filamentous actin. Despite the large quantity of endogenous actin present in membranes, exogenous muscular filamentous actin cosediments with membranes after a 30 min centrifugation at 30 000 g. The cosedimentation process is time-dependent and exhibits a complex relationship with actin concentration. The cosedimentation of actin with membranes can be partly explained by gelation as shown by low-shear viscosity and electron microscopy. The characterization of the gelation phenomenon as a function of time, actin and membrane concentrations, ionic strength, temperature and Ca2+ concentration is also presented. Gelation alone cannot however account for the overall cosedimentation data, and a more direct mode of association between actin and the membrane must be envisaged. The analogy that exists between the results obtained with liver plasma membranes and those obtained with other membrane systems suggests that a general mechanism may be involved in the interaction of actin with plasma membranes. 相似文献
12.
Up to 50% of the actin in erythrocyte membranes can be solubilized at low ionic strength in a form capable of inhibiting DNAse I, in the presence of 0.4 mM ATP and 0.05 mM calcium. In the absence of calcium and ATP, actin is released but is apparently rapidly denatured. Solubilization of G-actin increases with temperature up to 37 degrees C. At higher temperatures, actin is released rapidly but quickly loses its ability to inhibit DNAse I. 相似文献
13.
Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope 总被引:1,自引:0,他引:1
Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase telomere-led chromosome motion in budding yeast. Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. 相似文献
14.
Summary This paper, the last in a series of three, characterizes the electrical properties of phospholipid bilayer membranes exposed to aqueous solutions containing nonactin, monactin, dinactin, and trinactin and Li+, Na+, K+, Rb+, Cs+, and NH
4
+
ions. Not only are both the membrane resistance at zero current and the membrane potential at zero current found to depend on the aqueous concentrations of antibiotic and ions in the manner expected from the theory of the first paper, but also these measurements are demonstrated to be related to each other in the manner required by this theory for neutral carriers. To verify that these antibiotics indeed are free to move as carriers of cations, cholesterol was added to the lipid to increase the viscosity of the interior of the membrane. Cholesterol decreased by several orders of magnitude the ability of the macrotetralide antibiotics to lower the membrane resistance; nevertheless, the permeability ratios and conductance ratios remained exactly the same as in cholesterolfree membranes. These findings are expected for the carrier mechanism postulated in the first paper and serve to verify it. Lastly, the observed effects of nonactin, monactin, dinactin, and trinactin on bilayers are compared with those predicted in the preceding paper from the salt-extraction equilibrium constants measured there; and a close agreement is found. These results show that the theory of the first paper satisfactorily predicts the effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, using only the thermodynamic constants measured in the second paper. It therefore seems reasonable to conclude that these antibiotics produce their characteristic effects on membranes by solubilizing cations therein as mobile positively charged complexes.This work was carried out largely at the University of Chicago with the support of U. S. Public Health Service Grant GM 14404-02/03 and of National Science Foundation Grant GB 6685. 相似文献
15.
Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. 总被引:29,自引:0,他引:29
The cell-cell adherens junction is a site for cadherin-mediated cell adhesion where actin filaments are densely associated with the plasma membrane through its well-developed plasmalemmal undercoat. Recent research has focused on the molecular linkage between cadherins and actin filaments in the undercoat of adherens junctions in order to understand the functions of these undercoat-constitutive proteins in the regulation and signal transduction of cadherin-based cell adhesion. 相似文献
16.
17.
Sea urchin actin gene subtypes. Gene number, linkage and evolution 总被引:12,自引:0,他引:12
J J Lee R J Shott S J Rose T L Thomas R J Britten E H Davidson 《Journal of molecular biology》1984,172(2):149-176
The actin gene family of the sea urchin Strongylocentrotus purpuratus was analyzed by the genome blot method, using subcloned probes specific to the 3' terminal non-translated actin gene sequence, intervening sequence and coding region probes. We define an actin gene subtype as that gene or set of genes displaying homology with a given 3' terminal sequence probe, when hybridized at 55 degrees C, 0.75 M-Na+. By determining the often polymorphic restriction fragment band pattern displayed in genome blots by each probe, all, or almost all of the actin genes in this species could be classified. Our evidence shows that the S. purpuratus genome probably contains seven to eight actin genes, and these can be assigned to four subtypes. Studies of the expression of the genes (Shott et al., 1983) show that the actin genes of three of these subtypes code for cytoskeletal actins (Cy), while the fourth gives rise to a muscle-specific actin (M). We denote the array of S. purpuratus actin genes indicated by our data as follows. There is a single CyI actin gene, two or possibly three CyII genes (CyIIa, CyIIb, and possibly CyIIc), three CyIII actin genes (CyIIIa, CyIIIb, CyIIIc), and a single M actin gene. Comparative studies were carried out on the actin gene families of five other sea urchin species. At least the CyIIa and CyIIb genes are also linked in the Strongylocentrotus franciscanus genome, and this species also has a CyI gene, an M actin gene and at least two CyIII actin genes. It is not clear whether it also possesses a CyIIc actin gene, or a CyIIIc actin gene. The genome of a more closely related congener, Strongylocentrotus dr?bachiensis, includes 3' terminal sequences suggesting the presence of a CyIIc gene. In S. franciscanus and S. dr?bachiensis the first intron of the CyI gene has remained homologous with intron sequences of both the CyIIa and CyIIb genes, indicating a common origin of these three linked cytoskeletal actin genes. Of the four S. purpuratus 3' terminal subtype probe sequences only the CyI 3' terminal sequence has been conserved sufficiently during evolution to permit detection outside of the genus Strongylocentrotus. An unexpected observation was that a sequence found only in the 3' untranslated region of the CyII actin gene in the DNA of S. dr?bachiensis and S. purpuratus is represented as a large family of interspersed repeat sequences in the genome of S. franciscanus. 相似文献
18.
Walders-Harbeck B Khaitlina SY Hinssen H Jockusch BM Illenberger S 《FEBS letters》2002,514(2-3):275-280
Glucocorticoid induced tumor necrosis factor receptor (GITR) is a new member of the tumor necrosis factor-nerve growth factor receptor superfamily of which the function has not been well studied. The extracellular domain of GITR was produced in Escherichia coli and purified as a single band of predicted M(r) of 18.0 kDa. GITR and GITR ligand were expressed constitutively on the surface of Raw 264.7 macrophage cell line and murine peritoneal macrophages. An extracellular domain of GITR can activate murine macrophages to express inducible nitric oxide synthase and to generate nitric oxide in a dose- and time-dependent manner. 相似文献
19.
Isolation of a subpopulation of glycoprotein IIb-III from platelet membranes that is bound to membrane actin 总被引:1,自引:7,他引:1
下载免费PDF全文

Triton X-100-insoluble residues, or skeletons, of plasma membrane-rich vesicles obtained from unstimulated human platelets were isolated by high speed centrifugation. About 10-15% of the total surface iodinatable glycoproteins IIb and III (GPIIb and GPIII, respectively) co-isolated with the insoluble fraction. After sonication and centrifugation the solubilized material was further purified by affinity chromatography on Lens culinaris lectin-Sepharose. SDS PAGE analysis of this material revealed the presence of at least three major proteins, which were shown to be GPIIb, GPIII, and membrane actin, as judged by their electrophoretic properties and on the basis of immunological criteria. Antibodies directed against platelet surface glycoproteins and antibodies directed against rabbit actin were able to immunoprecipitate all three proteins, which indicates that they were noncovalently associated with one another. Gel filtration of the Lens lectin-purified Triton-insoluble complex on Ultrogel AcA 22 showed that greater than 85% of the total surface GPIIb and III was associated with an actin-rich peak that eluted in the void volume. In contrast, the form of GPIIb-III present in the Triton-soluble membrane fraction behaved as monomeric species when chromatographed under identical conditions. Finally, the GPIIb-III membrane actin complex bound with high efficiency to rabbit f-actin in vitro in a Ca++-independent manner, whereas the monomeric forms found in the Triton-soluble fraction did not bind to actin. These results indicate that two forms of GPIIb and III exist: one that binds directly to endogenous membrane actin and one that does not. 相似文献
20.
Masato Tawata Ryoji Kobayashi Myles L. Mace Thor B. Nielsen James B. Field 《Biochemical and biophysical research communications》1983,111(2):415-423
An actin polymerization stimulator was purified from bovine thyroid plasma membranes by DNase I affinity column chromatography. Although the molecular weight of the protein was about 42,000 (42K) by sodium dodecyl sulfate polyacrylamide gel electrophoresis, it did not comigrate with actin. In the presence of 30 mM KCl, the 42K protein facilitated formation of actin filaments when analyzed by a centrifugation method, accelerated the initial phase of actin polymerization as measured in an Ostwald viscometer and increased the length of filaments as shown by electron microscopy. The 42K protein also accelerated the initial phase of actin polymerization in the presence of 100 mM KCl and 2 mM MgCl2 but did not affect the final viscosity. The effect of the 42K protein was diminished by 5 uM cytochalasin B or 1 uM cytochalasin D. This 42K protein may anchor actin filaments onto the thyroid plasma membrane. 相似文献