首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin-based motility: from molecules to movement   总被引:5,自引:0,他引:5  
Extensive progress has been made recently in understanding the mechanism by which cells move and extend protrusions using site-directed polymerization of actin in response to signalling. Insights into the molecular mechanism of production of force and movement by actin polymerization have been provided by a crosstalk between several disciplines, including biochemistry, biomimetic approaches and computational studies. This review focuses on the biochemical properties of the proteins involved in actin-based motility and shows how these properties are used to generate models of force production, how the predictions of different theoretical models are tested using a biochemically controlled reconstituted motility assay and how the changes in motility resulting from changes to the concentrations of components of the assay can help understand diverse aspects of the motile behavior of living cells.  相似文献   

2.
The cytoskeleton and gravitropism in higher plants   总被引:11,自引:0,他引:11  
The cellular and molecular mechanisms underlying the gravitropic response of plants have continued to elude plant biologists despite more than a century of research. Lately there has been increased attention on the role of the cytoskeleton in plant gravitropism, but several controversies and major gaps in our understanding of cytoskeletal involvement in gravitropism remain. A major question in the study of plant gravitropism is how the cytoskeleton mediates early sensing and signal transduction events in plants. Much has been made of the actin cytoskeleton as the cellular structure that sedimenting amyloplasts impinge upon to trigger the downstream signaling events leading to the bending response. There is also strong molecular and biochemical evidence that the transport of auxin, an important player in gravitropism, is regulated by actin. Organizational changes in microtubules during the growth response phase of gravitropism have also been well documented, but the significance of such reorientations in controlling differential cellular growth is unclear. Studies employing pharmacological approaches to dissect cytoskeletal involvement in gravitropism have led to conflicting results and therefore need to be interpreted with caution. Despite the current controversies, the revolutionary advances in molecular, biochemical, and cell biological techniques have opened up several possibilities for further research into this difficult area. The myriad proteins associated with the plant cytoskeleton that are being rapidly characterized provide a rich assortment of candidate regulators that could be targets of the gravity signal transduction chain. Cytoskeletal and ion imaging in real time combined with mutant analysis promises to provide a fresh start into this controversial area of research.  相似文献   

3.
The form and function of actin in the nucleus have been enigmatic for over 30 years. Recently actin has been assigned numerous functional roles in the nucleus, but its form remains a mystery. The intricate relationship between actin form and function in the cytoplasm implies that understanding the structural properties of nuclear actin is elementary to fully understanding its function. In this issue, McDonald et al. (p. 541) use fluorescence recovery after photobleaching (FRAP) to tackle the question of whether nuclear actin exists as monomers or polymers.  相似文献   

4.
The dynamic responses of actin stress fibers within a cell's cytoskeleton are central to the development and maintenance of healthy tissues and organs. Disturbances to these underlie a broad range of pathologies. Because of the importance of these responses, extensive experiments have been conducted in vitro to characterize actin cytoskeleton dynamics of cells cultured upon two-dimensional substrata, and the first experiments have been conducted for cells within three-dimensional tissue models. Three mathematical models exist for predicting the dynamic behaviors observed. Surprisingly, despite differing viewpoints on how actin stress fibers are stabilized or destabilized, all of these models are predictive of a broad range of available experimental data. Coarsely, the models of Kaunas and co-workers adopt a strategy whereby mechanical stretch can hasten the depolymerization actin stress fibers that turn over constantly, while the models of Desphande and co-workers adopt a strategy whereby mechanical stress is required to activate the formation of stress fibers and subsequently stabilize them. In three-dimensional culture, elements of both approaches appear necessary to predict observed phenomena, as embodied by the model of Lee et al. After providing a critical review of existing models, we propose lines of experimentation that might be able to test the different principles underlying their kinetic laws.  相似文献   

5.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

6.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

7.
Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility.  相似文献   

8.
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well.  相似文献   

9.
The extension of the plasma membrane during cell crawling or spreading is known to require actin polymerization; however, the question of how pushing forces derive from actin polymerization remains open. A leading theory (herein referred to as elastic propulsion) illustrates how elastic stresses in networks growing on curved surfaces can result in forces that push particles. To date all examples of reconstituted motility have used curved surfaces, raising the possibility that such squeezing forces are essential for actin-based pushing. By contrast, other theories, such as molecular ratchets, neither require nor consider surface curvature to explain pushing forces. Here, we critically test the requirement of substrate curvature by reconstituting actin-based motility on polystyrene disks. We find that disks move through extracts in a manner that indicates pushing forces on their flat surfaces and that disks typically move faster than the spheres they are manufactured from. For a subset of actin tails that form on the perimeter of disks, we find no correlation between local surface curvature and tail position. Collectively the data indicate that curvature-dependent mechanisms are not required for actin-based pushing.  相似文献   

10.
11.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

12.
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease.  相似文献   

13.
Although our understanding of the regulation of cellular actin and its control during the development of invertebrates is increasing, the question as to how such actin dynamics are regulated differentially across the vertebrate embryo to effect its relatively complex morphogenetic cell movements remains poorly understood. Intercellular signaling that provides spatial and temporal cues to modulate the subcellular localization and activity of actin regulatory molecules represents one important mechanism. Here we explore whether the localized gene expression of specific actin regulatory molecules represents another developmental mechanism. We have identified a cap1 homolog and a novel guanine nucleotide exchange factor (GEF), quattro (quo), that share a restricted gene expression domain in the anterior mesendoderm of the zebrafish gastrula. Each gene is required for specific cellular behaviors during the anterior migration of this tissue; furthermore, cap1 regulates cortical actin distribution specifically in these cells. Finally, although cap1 and quo are autonomously required for the normal behaviors of these cells, they are also nonautonomously required for convergence and extension movements of posterior tissues. Our results provide direct evidence for the deployment of developmentally restricted actin-regulatory molecules in the control of morphogenetic cell movements during vertebrate development.  相似文献   

14.
Processivity in myosin V is mediated through the mechanical strain that results when both heads bind strongly to an actin filament, and this strain regulates the timing of ADP release. However, what is not known is which steps that lead to ADP release are affected by this mechanical strain. Answering this question will require determining which of the several potential pathways myosin V takes in the process of ADP release and how actin influences the kinetics of these pathways. We have addressed this issue by examining how magnesium regulates the kinetics of ADP release from myosin V and actomyosin V. Our data support a model in which actin accelerates the release of ADP from myosin V by reducing the magnesium affinity of a myosin V-MgADP intermediate. This is likely a consequence of the structural changes that actin induces in myosin to release phosphate. This effect on magnesium affinity provides a plausible explanation for how mechanical strain can alter this actin-induced acceleration. For actomyosin V, magnesium release follows phosphate release and precedes ADP release. Increasing magnesium concentration to within the physiological range would thus slow both the ATPase activity and the velocity of movement of this motor.  相似文献   

15.
16.
Rearrangements of the actin cytoskeleton are involved in a variety of cellular processes from locomotion of cells to morphological alterations of the cell surface. One important question is how local interactions of cells with the extracellular space are translated into alterations of their membrane organization. To address this problem, we studied CASK, a member of the membrane-associated guanylate kinase homologues family of adaptor proteins. CASK has been shown to bind the erythrocyte isoform of protein 4.1, a class of proteins that promote formation of actin/spectrin microfilaments. In neurons, CASK also interacts via its PDZ domain with the cytosolic C termini of neurexins, neuron-specific cell-surface proteins. We now show that CASK binds a brain-enriched isoform of protein 4.1, and nucleates local assembly of actin/spectrin filaments. These interactions can be reconstituted on the cytosolic tail of neurexins. Furthermore, CASK can be recovered with actin filaments prepared from rat brain extracts, and neurexins are recruited together with CASK and protein 4.1 into these actin filaments. Thus, analogous to the PDZ-domain protein p55 and glycophorin C at the erythrocyte membrane, a similar complex comprising CASK and neurexins exists in neurons. Our data suggest that intercellular junctions formed by neurexins, such as junctions initiated by beta-neurexins with neuroligins, are at least partially coupled to the actin cytoskeleton via an interaction with CASK and protein 4.1.  相似文献   

17.
Recent experiments on the response of embryonic epidermis to wounding have revealed a cable of filamentous actin at the wound edge, which may be responsible for healing (Martin and Lewis 1991, 1992). We investigate the important question of how the cable forms as a response to wounding. We modify the mechanical model of Murray and Oster (1984) to investigate the post-wounding equilibrium in the epidermal sheet. We analyse the model in both one-dimensional and radially symmetric two-dimensional geometries, to determine the parameter domain in which a solution exists. We show that in both geometries the model solutions reflect the phenomenon of the actin cable for parameter values close to one edge of this domain. We interpret these results in terms of the relative rates of intracellular reorganization of actin and myosin, and thus suggest a possible mechanism for the formation of the actin cable.  相似文献   

18.
A key question in cytokinesis is how the plane of cell division is positioned within the cell. Although a number of cytokinesis factors involved in formation of the actomyosin contractile ring have been identified, little is known about how these factors are localized and assembled at the cell-division site. Cells of the fission yeast Schizosaccharomyces pombe divide using a medial actomyosin ring that assembles in early mitosis [1]. The S. pombe cdc12 gene encodes a formin, a member of a family of proteins that have functions in cytokinesis and cell polarity and that may bind Rho/Cdc42 GTPases, profilin and other actin-associated proteins [1] [2] [3] [4]. The cdc12 protein (cdc12p) is required specifically for medial-ring assembly during cytokinesis and is a component of this ring [2] [5]. In this study, cdc12p was found, during interphase, in a discrete, motile cytoplasmic spot that moved to the future site of cell division at the onset of mitosis. Three lines of evidence indicated that this cdc12p spot moved on both actin and microtubule networks: movement required either actin or microtubules; the spot was associated with actin and microtubule structures; and individual spots were seen to move along both microtubule and non-microtubule tracks. These findings demonstrate that a cytokinesis factor may travel on both microtubule and actin networks to the future site of cell division.  相似文献   

19.
The profilin family consists of a group of ubiquitous highly conserved 12-15 kDa eukaryotic proteins that bind actin, phosphoinositides, poly-l-proline (PLP) and proteins with proline-rich motifs. Some proteins with proline-rich motifs form complexes that have been implicated in the dynamics of the actin cytoskeleton and processes such as vesicular trafficking. A major unanswered question in the field is how profilin achieves the required specificity to bind such an array of proteins. It is now becoming clear that profilin isoforms are subject to differential regulation and that they may play distinct roles within the cell. Considerable evidence suggests that these isoforms have different functional roles in the sorting of diverse proteins with proline-rich motifs. All profilins contain highly conserved aromatic residues involved in PLP binding which are presumably implicated in the interaction with proline-rich motif proteins. We have previously shown that profilin is phosphorylated on tyrosine residues. Here, we show that profilin can bind directly to Phaseolus vulgaris phosphoinositide 3-kinase (PI3K) type III. We demonstrate that a new region around Y72 of profilin, as well as the N- and C-terminal PLP-binding domain, recognizes and binds PLP and PI3K. In vitro binding assays indicate that PI3K type III forms a complex with profilin in a manner that depends on the tyrosine phosphorylation status within the proline-rich-binding domain in profilin. Profilin-PI3K type III interaction suggests that profilin may be involved in membrane trafficking and in linking the endocytic pathway with actin reorganization dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号