首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ryle, G. J. A., Powell, C. E. and Gordon, A. J. 1988. Responsesof N2 fixation-linked respiration to host-plant energy statusin white clover acclimated to a controlled environment.—J.exp. Bot. 39: 879–887. Single plants of white clover, acclimated to a controlled environmentand dependent for nitrogen on N2 fixation in their root nodules,were darkened, defoliated or exposed to enhanced CO2 levelsto establish the quantitative relationships between the photosynthesisof the host plant and the N2 fixation metabolism of root nodules. The nodule respiration associated with N2 fixation (FLR) declinedrapidly to 10–15% of its normal rate following plant darkeningearly in the photoperiod. Darkening at progressively later intervalsduring the photoperiod demonstrated a positive, apparently linearrelationship between duration of illumination and total FLRduring the photoperiod and the following night period. Completeor partial defoliation reduced FLR according to the leaf arearemoved: again, there was a strong positive correlation betweencurrent rate of photosynthesis, whether of defoliated or undefoliatedplants and the FLR of root nodules. Doubling the current rateof photosynthesis, by enhancing CO2 levels around the shoots,promoted FLR within 1–2 h when plants were stressed bylack of light. However, enhanced CO2 levels increased FLR onlyslowly over a period of several hours in plants entrained tothe normal growing conditions. It is concluded that, in these plants acclimated to a uniformand favourable controlled environment, the supply and utilizationof photosynthetic assimilate in N2 fixation was finely balancedand quantitatively linked during a single diurnal period andthat nodule functioning was not depressed by lack of energysubstrate. Key words: White clover, N2 fixation, photosynthesis.  相似文献   

2.
In two experiments, the functioning and metabolism of nodulesof white clover, following a defoliation which removed abouthalf the shoot tissue, were compared with those of undefoliatedplants. In one experiment, the specific respiration rates of nodulesfrom undefoliated plants varied between 1160 and 1830 µmolCO2 g–1h–1, of which nodule ‘growth and maintenance’accounted for 22 ± 2 per cent, or 27 ± 3.6 percent, according to method of calculation. Defoliation reducedspecific nodule respiration and nodule ‘growth and maintenance’respiration by 60–70 per cent, and rate of N2 fixationby a similar proportion. The original rate of nodule metabolismwas re-established after about 5 d of regrowth; during regrowthnodule respiration was quantitatively related to rate of N2,fixation: 9.1 µmol CO2 µmol–1N2. With the possible exception of nodules examined 24 h after defoliation,the efficiency of energy utilization in nitrogenase functioningin both experiments was the same in defoliated and undefoliatedplants: 2.0±0.1 µmol CO2 µmol–1 C2H4;similarly, there was no change in the efficiency of nitrogenasefunctioning as rate of N2 fixation increased with plant growthfrom 1 to 22 µmol N2 per plant h–1. Exposure of nodulated white clover root systems to a 10 percent acetylene gas mixture resulted in a sharp peak in rateof ethylene production after 1.5–2.5 min; subsequently,rate of ethylene production declined rapidly before stabilisingafter 0.5–1 h at a rate about 50 per cent of that initiallyobserved. Regression of ‘peak’ rate of ethyleneproduction on rate of N2 fixation indicated a value of 2.9 µmolC2H4 µmol–1 N2, for rates of N2 fixation between1 and 22 µmol N2 per plant h–1. The relationshipsbetween nitrogenase respiration, acetylene reduction rates andN2 fixation rates are discussed. Trifolium repens, white clover, defoliation, nodule respiration, N2, fixation, nitrogenase  相似文献   

3.
Single plants of white clover grown in controlled environments,and dependent for nitrogen on N, fixation, were defoliated at1 or 2 d intervals to 3, 2 and 1 expanded leaves per stolon(Expt 1), and to 1,0.5 (1 leaf on every alternate stolon) and0 expanded leaves per stolon (Expt 2), for 43–50 days Plants adapted to severe defoliation by developing much smallerleaves with a slightly reduced specific leaf area, more stolons,a smaller proportion of weight in leaf, root and nodules anda greater proportion of weight in stolons. The daily yield (materialremoved by defoliation) of d. wt and nitrogen generally decreasedwith severity of defoliation, as did the residual plant weight.However, the ‘efficiency’ of yield (daily yield/residualweight x 100) of dry matter and nitrogen was greater in themost severely defoliated treatments, attaining a maximum of5–6 % All plants adapted to the imposed defoliation regimes, howeversevere, with the result that even plants maintained withoutany fully expanded leaves invested a similar fraction of theirmetabolic resources in shoot and root as less severely defoliatedplants, and continued to grow and fix N2, albeit at a very reducedrate of 1–2 mg Nd–11. The energetic cost of N2 fixation(acetylene reduction) remained constant in all treatments at31 mole CO2 mole C2H4–1, but there was some evidence thatrate of N2 fixation per unit of nodule weight declined in themost harshly defoliated treatment. Trifolium repens, white clover, continous defolation, growth, N2 fixation  相似文献   

4.
Single white clover plants grown in pots of Perlite in a controlledenvironment and completely dependent on N2 fixation were defoliatedto various degrees (46–85 per cent of shoot weight removed).The soluble protein content of nodules declined by about 20per cent and leghaemoglobin content by 50 per cent in the first4–7 d after defoliation but increased again to controllevels as new leaf tissue appeared. In the short term (2–3h) carbohydrate content of nodules declined to different extentsdepending on the severity of defoliation. The initial declinein N2 fixation and the respiration associated with it, appearednot to be related to the instantaneous carbohydrate contentof nodules but rather to the supply of current photosynthatefrom the shoot. After 24–48 h, however, the carbohydratecontent of nodules had declined to low levels, regardless ofthe severity (46 or 71 per cent shoot removed) of defoliation.As new leaf tissue appeared carbohydrate levels in all partsof the plant gradually recovered towards control levels. Microscopic examination of nodule sections indicated that onlyafter very severe defoliation (80–85 per cent shoot removed)was nodule deterioration evident. Even here, as the plant establishednew leaves, the damage to nodules was repaired and no noduleloss was apparent. Trifolium repens, white clover, defoliation, carbohydrate, protein, leghaemoglobin  相似文献   

5.
The relation between the rate of nitrogenase-linked respirationand net photosynthesis, and the effect of defoliation on thisrelation, was studied in plants of subterranean clover (Trifoliumsubterraneum L. cv. Seaton Park). Nitrogenase-linked respirationwas estimated as the difference between the rate of nodulatedroot respiration at 21% O2 and at 3% O2. The level to which the rate of nitrogenase-linked respirationfell several hours after defoliation was directly proportionalto the decline in the rate of net photosynthesis. Approximately9% of net photosynthesis was always expended in nitrogenaseactivity, irrespective of whether or not the plants were defoliated.This proportion was maintained during the first 3 d of regrowth. To determine whether the decline in nitrogenase-linked respirationafter defoliation was due solely to the decline in the rateof photosynthesis, a further experiment was conducted in whichthe pre-defoliation rate of net photosynthesis was restoredimmediately (with supplementary light) or within 5 min (supplementarylight and CO2) after defoliation. Restoring the rate of netphotosynthesis did not prevent the post-defoliation declinein nitrogenase-linked respiration. However, when photosynthesiswas reduced to zero by the imposition of darkness, and the rateof nitrogenase-linked respiration allowed to decline to a steadyrate after 3 h, a rapid recovery in the rate of nodulated rootrespiration began within 2 h of returning the plants to thelight. It was hypothesized that a ‘shoot factor’,which was affected by defoliation, could override the apparentrelation between nitrogenase-linked respiration and the rateof current photosynthesis. Key words: Defoliation, N2 fixation, photosynthesis, nitrogenase-linked respiration, subterranean clover  相似文献   

6.
Direct, continuous measurements of the CO2 evolution of rootnodules, calibrated by direct measurements of rate of ethyleneproduction, were utilized to determine the short-term responseof nitrogenase activity to defoliation and photosynthesis inwhite clover. Defoliation (removal of all expanded leaflets) generally resultedin a fall in nodulated root respiration within 10 min; mostrespiration associated with nitrogenase activity ceased within1–2 h. Darkening of the shoot also reduced nodulated root respirationwithin 10 min, but the subsequent fall in respiration, althoughof the same magnitude, was slower. The re-illumination of shootslargely reversed these effects. The inhibition of photosynthesisby DCMU largely simulated the effects of darkening the shoots. It is concluded that, in these white clover plants of 100 mgto 2.0 g total weight, current photosynthate provides the primarysource of energy for N2 fixation. The mobilization of reserveenergy substrate appeared to play only a small role. The minimumtime interval of 10 min between onset of treatment and fallin nodule respiration probably reflects the time taken to exhaustthe assimilate in transit between leaf and nodule. Key words: White clover, N2 fixation, Defoliation, Photosynthesis  相似文献   

7.
The aim of this study was to test the effect of oxygen partialpressure as a possible limiting factor of nitrogen fixationfollowing defoliation. The response of nitrogenase activity(C2H2-reduction) of defoliated and undefoliated white and redclover plants (Trifolium repens L. and Trifolium pratense L.)to either 19 kPa oxygen or 55 kPa oxygen was investigated. Priorto defoliation, white clover plants were grown for five weeksin a growth chamber, and red clover plants for 7 or 11 weeksin a glasshouse. The results included measurements of 16N2-uptake. Increasing oxygen partial pressure from 19 to 55 kPa severelyrestricted nitrogenase activity of undefoliated white cloverplants; however, 2 h after complete defoliation, the same treatmentcaused a significant increase. A fivefold increase in nitrogenaseactivity upon exposure to the elevated oxygen partial pressurewas found at the end of a 24 h period. This beneficial effectdecreased gradually from 1 to 5 d after defoliation. The responseof recently defoliated red clover plants to 55 kPa oxygen partialpressure was similar to that of white clover, independentlyof plant age. The gradual recovery of nitrogenase activity duringthree weeks of regrowth was associated with a simultaneous changein the response to increased oxygen partial pressure, leadingagain to the response of undefoliated plants. These data suggested that lack of oxygen at the site of nitrogenfixation, resulting from a dramatic increase in oxygen-diffusionresistance, is the main factor limiting nitrogenase activityfollowing defoliation. Trifolium repens L., Trifolium pratense L., white clover, red clover, defoliation, regrowth, nodules, nitrogen fixation, nitrogenase activity, oxygen limitation  相似文献   

8.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

9.
The carbon economy of subterranean clover swards subjected tothree defoliation treatments (removal of 30, 70 and 80% of shootdry weight) was compared with that of uncut swards. Carbon dioxideexchange in shoots and roots was measured independently 0, 4,8 and 12 d after defoliation. The respiration linked to nitrogenaseactivity was estimated by comparing root respiration measuredin an atmosphere containing 3% oxygen with the respiration in21% oxygen. Net photosynthesis fell by up to 100% immediately after defoliation.There was a decline of over 60percnt; in root respiration bythe end of the first light period, composed of a rapid declineof 70% in nitrogenase-linked respiration in all treatments anda slower decline of nearly 40% in root plus nodule growth andmaintenance respiration in the more severe treatments. Recoveryof net photosynthesis to rates achieved by uncut swards occurredover 4 d in the 30% cut treatment and at least 12 d in moresevere treatments. Whilst recovery of photosynthesis was theprinciple determinant of recovery of net positive carbon balance,the early reduction in respiration facilitated this outcome.After the immediate decline in nitrogenase-linked respiration,recovery in this component of respiration appeared to be linkedwith the recovery in net photosynthesis (approximately 10% ofnet photosynthesis). Carbon budgets revealed priorities in allocation towards leafin the first 5 d and later also towards root growth in severelydefoliated swards. Root respiration comprised a large respiratorycost (up to 75% of net photosynthesis) during early regrowth. Carbon budget, defoliation, N2 fixation, photosynthesis, regrowth, respiration, subterranean clover, Trifolium subterraneum L  相似文献   

10.
A growth-chamber study was carried out to determine whetherthe response of apparent nitrogenase activity (C2 H2 reduction)to complete defoliation is influenced by the availability ofcarbohydrate reserves Reserve carbohydrate (TNC) concentrationsof 6-week-old white clover (Trifoliun repens L) plants weremodified by CO2 pretreatments There was no difference in theresponse of apparent nitrogenase activity to defoliation betweenplants with different TNC concentrations C2H2 reduction activitydeclined sharply after defoliation and then recovered similarlyin both high- and low-TNC plants Further experiments were conductedto explain the lack of response of apparent nitrogenase activityto TNC levels Bacteroid degradation was ruled out because invitro nitrogenase activity of crude nodule extracts was stillintact 24 h after defoliation Sufficient carbohydrates appearedto be available to the nodules of defoliated plants becauseadding [14C]glucose to the nutrient solution did not preventthe decline in apparent nitrogenase activity These conclusionswere supported by the finding that an increase in pO2 aroundthe nodules of defoliated plants completely restored their C2H2reduction activity The comparison of the effects of defoliationand darkness suggested that the decrease in apparent nitrogenaseactivity was not related directly to the interruption of photosynthesisIt appears that lack of photosynthates is not the immediatecause of the decline of nitrogen-fixing activity after defoliation White clover, Trifolium repens L, defoliation, nitrogen fixation, regrowth, reserves, carbohydrates, acetylene reduction, nodule extract  相似文献   

11.
Nodule function and protein synthesis were studied in defoliationstressed white clover plants. Uncut control plants (C) werecompared with plants from two defoliation treatments: (1) continuousdefoliation (CD) where all leaves and petioles were removedeach day; and (2) defoliated/recovered (DR) where, after removalof all leaves and petioles, new leaves were then allowed toregrow. After a single defoliation N2 fixation (acetylene reductionactivity) and nitrogenase-linked respiration declined by morethan 80% within 3 h and by nearly 100% by 24 h. DR plants beganto fix nitrogen again at a very low level 3 d later and thereafterrose to control levels by 15 d. Continuously defoliated plantsnever recovered N2 fixation capacity. Nodule protein complementwas assessed by polyacrylamide gel electrophoresis. Major changesoccurred in buffer soluble protein band patterns by 6 d in CDplants, but few changes were evident in SDS soluble proteins.By 9 and 14 d significant disruption of all proteins was evident.The prominent host plant protein, leghaemoglobin (Lb) had disappearedby 14 d. In DR plants the intensity of staining was reducedbut no major changes in band patterns were evident and by 21d nodules were rejuvenated. [35S]-labelled methionine was incorporated into nodule proteinsfrom all treatments throughout the experiment. However, continuousdefoliation caused increasing variability between replicatesin the labelled band patterns. By 21 d CD, much of the labelledprotein was present as amorphous low Mr material which suggestseither disruption of the protein synthesizing machinery or rapidhydrolysis by proteolytic enzymes. Surprisingly [35S]-methionine was never found in Lb from nodulesof any treatment. It is possible that white clover Lb does notcontain any methionine residues or that no synthesis of Lb occurred. Key words: Trifolium repens, white clover, defoliation, protein synthesis, nodules  相似文献   

12.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

13.
Changes in nitrogenase activity (C2H2 reduction and H2 production),nodulated root respiration and the efficiency of nitrogenasefunctioning were measured in response to progressive dehydrationof nodules on intact well-watered plants of subterranean clover(Trifolium subterraneum L.) cv. Seaton Park. The nodulated rootsof vegetative plants grown to the 14-leaf stage were incubatedin a gas exchange system through which a continuous dry airstreamwas passed over an 8 d period. The root tips were immersed inan N-free nutrient solution during this time so that water andion uptake was unimpeded. The decline in nodulated root respirationresulting from nodule drying was associated with a continualreduction in respiration coupled to nitrogenase activity. Asnodule water potential (nod) decreased, the proportion of totalnodulated root respiration which was nitrogenase-linked declinedfrom 50% (day 1) to 33% (day 8). This was accompanied by a 79%reduction in specific nitrogenase activity (from 3.79 to 0.81umol C2H4 g–1 nodule dry weight min–1). Nodule dehydrationalso induced a decline in hydrogen (H2) production in air. Therelative decline in hydrogen production exceeded that of acetylenereduction activity and this resulted in an increase in the relativeefficiency of nitrogenase functioning. However, the carbon costof nitrogenase activity progressively increased above 2.0 molCO2 respired per mol C2H4 reduced as rood decreased below –0.4to –0.5 MPa. Consecutive measurements of the rates ofhydrogen evolution, 15N2 fixation and acetylene reduction activityon intact unstressed plants resulted in a C2H4/N2 conversionfactor of 4.08 and an electron balance of 1.08. These resultsindicated that the pre-decline rate of acetylene reduction activitymeasured in a flow-through system provided a valid measure ofthe total electron flux through nitrogenase. Key words: Subterranean clover, dehydration, efficiency, nitrogenase activity  相似文献   

14.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

15.
Single, clonal plants of white clover were grown without inorganicnitrogen in four contrasting day/night temperature regimes,with a 12 h photoperiod, in controlled environments. Root andnodule respiration and acetylene reduction activity were measuredin a flow-through system during both day and night for plantsacclimated to day/night regimes of 23/18, 15/10 and 10/5 ?C.Similar measurements were made on plants acclimated to 20/15?C and stepwise at temperatures from 4 to 33 ?C. Peak rate of ethylene production, nitrogenase-linked respirationand basal root + nodule respiration increased approximatelylinearly from 5 to 23 ?C both in temperature-acclimated plantsand in plants exposed to varying measurement temperatures. Themeasured attributes did not vary significantly between day andnight. Temperatures above 23–25 ?C did not further enhancethe rate of ethylene production, which remained essentiallythe same up to the maximum measured temperature of 33 ?C. The measurements of nitrogenase-linked respiration between 5and 23 ?C, during both day and night, demonstrated a constant‘energetic cost’ of acetylene reduction of 2.9 µmolCO2 µmol C2H4–1,. Over the same temperature range,the approximate activation energy of acetylene reduction was60 kJ mol–1. The integrated day plus night nitrogenase-linkedrespiration accounted for 13.4–16% of the plant‘snet shoot photosynthesis in a single diurnal period: there wasno significant effect of temperature between 5 and 23 ?C. Key words: Trifolium repens, white clover, temperature, N2 fixation, respiration  相似文献   

16.
The Carbon Balance of a Legume and the Functional Economy of its Root Nodules   总被引:12,自引:2,他引:10  
Budgets for carbon and nitrogen in shoot, root, and nodulesof garden pea (Pisum sativum L.) are drawn up for a 9-d intervalin the life cycle, from data on nitrogen fixation, carbon accumulationin dry matter, respiratory output of plant organs, and organicsolute exchange between shoot and nodulated root. Of the carbon gained photosynthetically by the shoot from theatmosphere 26 per cent is incorporated directly into its drymatter, 32 per cent translocated to the nodules, and 42 percent to the supporting root. Of the nodules’ share, 5per cent is consumed in growth, 12 per cent in respiration,and 15 per cent returned to the shoot via the xylem, as aminocompounds generated in nitrogen fixation. Growth and respirationof the root utilize, respectively, 7 and 35 per cent. The respiratory efficiency of a nodulated root in terms of nitrogenfixation (5.9mg C per mg N2-N fixed) is found to be very similarto that of an uninoculated root assimilating nitrate (6.2 mgC per mg NO3-N reduced). The nodules require in growth, respiration,and export 4.1 mg C ( 10.3 mg carbohydrate) for each mg N whichthey fix. The nodules consume 3 ml O2 for every 1 ml N2 utilized in fixation. In exporting a milligram of fixed nitrogen the nodules requireat least 0.35 ml of water. Almost half of this requirement mightbe met by mass flow into the nodules via the phloem.  相似文献   

17.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

18.
Single plants of white clover (Trifolium repens) were establishedfrom stolon cuttings rooted in acid-washed silver sand. Allplants were inoculated with Rhizobium trifolii, and receivednutrient solution containing 0·5 mg 15N as either ammoniumor nitrate weekly for 12 weeks (i.e. 6 mg 15N in total). Plantswere then leniently defoliated or left intact, and the labelledN supply was replaced with unlabelled N. Lenient defoliationremoved fully expanded leaves only, leaving immature leaveswhich accounted for 50–55% of the total; growing pointnumbers were not reduced. Nodules, leaves and growing pointswere counted over the following 21 d period, and d. wts, N contents,and 15N enrichments of individual plant organs were determined. Defoliated plants had fewer nodules, but numbers of growingpoints were unaffected by defoliation. The rates of both leafemergence and expansion were accelerated in defoliated plants;in consequence the number of young leaves remained less thanin intact plants until day 21. Total dry matter (DM) and N accumulationwere less in defoliated plants, and a greater proportion oftotal plant DM was invested in roots. About 97 % of plant totalN was derived from fixed atmospheric N, but there was incompletemixing of fixed and mineral N within the plant. Relatively moremineral N was incorporated into roots, whereas there was relativelymore fixed N in nodules. There was isotopic evidence that Nwas remobilized from root and stolon tissue for leaf regrowthafter defoliation; approximately 2 % of plant N turned overdaily in the 7-d period after defoliation, and this contributedabout 50% of the N increment in leaf tissue. White clover, Trifolium repens L. cv. SI84, lenient defoliation, N economy, regrowth, N remobilization  相似文献   

19.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

20.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号