首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Different types of sensory neurons in the dorsal root ganglia project axons to the spinal cord to convey peripheral information to the central nervous system. Whereas most proprioceptive axons enter the spinal cord medially, cutaneous axons typically do so laterally. Because heavily myelinated proprioceptive axons project to the ventral spinal cord, proprioceptive axons and their associated oligodendrocytes avoid the superficial dorsal horn. However, it remains unclear whether their exclusion from the superficial dorsal horn is an important aspect of neural circuitry. Here we show that a mouse null mutation of Sema6d results in ectopic placement of the shafts of proprioceptive axons and their associated oligodendrocytes in the superficial dorsal horn, disrupting its synaptic organization. Anatomical and electrophysiological analyses show that proper axon positioning does not seem to be required for sensory afferent connectivity with motor neurons. Furthermore, ablation of oligodendrocytes from Sema6d mutants reveals that ectopic oligodendrocytes, but not proprioceptive axons, inhibit synapse formation in Sema6d mutants. Our findings provide new insights into the relationship between oligodendrocytes and synapse formation in vivo, which might be an important element in controlling the development of neural wiring in the central nervous system.  相似文献   

3.
Sensory axons from dorsal root ganglia neurons are guided to spinal targets by molecules differentially expressed along the dorso-ventral axis of the neural tube. NT-3-responsive muscle afferents project ventrally, cease extending, and branch upon contact with motoneurons (MNs), their synaptic partners. We have identified WNT-3 as a candidate molecule that regulates this process. Wnt-3 is expressed by MNs of the lateral motor column at the time when MNs form synapses with sensory neurons. WNT-3 increases branching and growth cone size while inhibiting axonal extension in NT-3- but not NGF-responsive axons. Ventral spinal cord secretes factors with axonal remodeling activity for NT-3-responsive neurons. This activity is present at limb levels and is blocked by a WNT antagonist. We propose that WNT-3, expressed by MNs, acts as a retrograde signal that controls terminal arborization of muscle afferents.  相似文献   

4.
Kuruvilla R  Zweifel LS  Glebova NO  Lonze BE  Valdez G  Ye H  Ginty DD 《Cell》2004,118(2):243-255
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.  相似文献   

5.
Recent studies have demonstrated that the topography of thalamocortical (TC) axon projections is initiated before they reach the cortex, in the ventral telencephalon (VTel). However, at this point, the molecular mechanisms patterning the topography of TC projections in the VTel remains poorly understood. Here, we show that a long-range, high-rostral to low-caudal gradient of Netrin-1 in the VTel is required in vivo for the topographic sorting of TC axons to distinct cortical domains. We demonstrate that Netrin-1 is a chemoattractant for rostral thalamic axons but functions as a chemorepulsive cue for caudal thalamic axons. In accordance with this model, DCC is expressed in a high-rostromedial to low-caudolateral gradient in the dorsal thalamus (DTh), whereas three Unc5 receptors (Unc5A–C) show graded expression in the reverse orientation. Finally, we show that DCC is required for the attraction of rostromedial thalamic axons to the Netrin-1–rich, anterior part of the VTel, whereas DCC and Unc5A/C receptors are required for the repulsion of caudolateral TC axons from the same Netrin-1–rich region of the VTel. Our results demonstrate that a long-range gradient of Netrin-1 acts as a counteracting force from ephrin-A5 to control the topography of TC projections before they enter the cortex.  相似文献   

6.
BDNF and NT-4 (but not NT-3 or CNTF) significantly enhanced the outgrowth of early embryonic and adult regenerating RGC axons when provided with a supportive substrate in vitro. BDNF and NT-4 treatment transiently increased RGC axon outgrowth from E15 rat retinas but not from retinas at older embryonic ages. The transient effect of BDNF and NT-4 and the inability of the neurotrophins to promote outgrowth from older embryonic retinal explants suggests a time frame of neurotrophin action and that other chemical factors (target-derived or otherwise) may be necessary for the continued maintenance of developing RGC axons. BDNF and NT-4 also enhanced the outgrowth of regenerating axons from adult retinal explants, but appeared to have a more subtle effect on axon outgrowth, in that the growth-promoting effects of BDNF and NT-4 appeared continuous throughout the incubation period. The suppression of RGC axon outgrowth from embryonic and adult retinae cultured in trkB-IgG-containing medium suggests that the response of developing and regenerating axons, to BDNF and NT-4 are likely to occur through trkB signalling.  相似文献   

7.
Dorsal root ganglion (DRG) neurons extend axons to specific targets in the gray matter of the spinal cord. During development, DRG axons grow into the dorsolateral margin of the spinal cord and projection into the dorsal mantle layer occurs after a ;waiting period' of a few days. Netrin 1 is a long-range diffusible factor expressed in the ventral midline of the developing neural tube, and has chemoattractive and chemorepulsive effects on growing axons. Netrin 1 is also expressed in the dorsal spinal cord. However, the roles of dorsally derived netrin 1 remain totally unknown. Here, we show that dorsal netrin 1 controls the correct guidance of primary sensory axons. During the waiting period, netrin 1 is transiently expressed or upregulated in the dorsal spinal cord, and the absence of netrin 1 results in the aberrant projection of sensory axons, including both cutaneous and proprioceptive afferents, into the dorsal mantle layer. Netrin 1 derived from the dorsal spinal cord, but not the floor plate, is involved in the correct projection of DRG axons. Furthermore, netrin 1 suppresses axon outgrowth from DRG in vitro. Unc5c(rcm) mutant shows abnormal invasion of DRG axons as observed in netrin 1 mutants. These results are the first direct evidence that netrin 1 in the dorsal spinal cord acts as an inhibitory cue for primary sensory axons and is a crucial signal for the formation of sensory afferent neural networks.  相似文献   

8.
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of β-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.  相似文献   

9.
Trigeminal sensory axons project to several epithelial targets, including those of the maxillary and mandibular processes. Previous studies identified a chemoattractant activity, termed Maxillary Factor, secreted by these processes, which can attract developing trigeminal axons in vitro. We report that Maxillary Factor activity is composed of two neurotrophins, neurotrophin-3 (NT-3) and Brain-Derived Neurotrophic Factor (BDNF), which are produced by both target epithelium and pathway mesenchyme and which are therefore more likely to have a trophic effect on the neurons or their axons than to provide directional information, at least at initial stages of trigeminal axon growth. Consistent with this, the initial trajectories of trigeminal sensory axons are largely or completely normal in mice deficient in both BDNF and NT-3, indicating that other cues must be sufficient for the initial stages of trigeminal axon guidance.  相似文献   

10.
Yoshida Y  Han B  Mendelsohn M  Jessell TM 《Neuron》2006,52(5):775-788
As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.  相似文献   

11.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.  相似文献   

12.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

13.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

14.
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.  相似文献   

15.
Vertebrate eye movements depend on the co‐ordinated function of six extraocular muscles that are innervated by the oculomotor, trochlear, and abducens nerves. Here, we show that the diffusible factors, stromal cell‐derived factor‐1 (SDF‐1) and hepatocyte growth factor (HGF), guide the development of these axon projections. SDF‐1 is expressed in the mesenchyme around the oculomotor nerve exit point, and oculomotor axons fail to exit the neuroepithelium in mice mutant for the SDF‐1 receptor CXCR4. Both SDF‐1 and HGF are expressed in or around the ventral and dorsal oblique muscles, which are distal targets for the oculomotor and trochlear nerves, respectively, as well as in the muscles which are later targets for oculomotor axon branches. We find that in vitro SDF‐1 and HGF promote the growth of oculomotor and trochlear axons, whereas SDF‐1 also chemoattracts oculomotor axons. Oculomotor neurons show increased branching in the presence of SDF‐1 and HGF singly or together. HGF promotes the growth of trochlear axons more than that of oculomotor axons. Taken together, these data point to a role for both SDF‐1 and HGF in extraocular nerve projections and indicate that SDF‐1 functions specifically in the development of the oculomotor nerve, including oculomotor axon branch formation to secondary muscle targets. HGF shows some specificity in preferentially enhancing development of the trochlear nerve. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 549–564, 2010  相似文献   

16.
The most common form of human autosomal dominant hereditary spastic paraplegia (AD-HSP) is caused by mutations in the SPG4 (spastin) gene, which encodes an AAA ATPase closely related in sequence to the microtubule-severing protein Katanin. Patients with AD-HSP exhibit degeneration of the distal regions of the longest axons in the spinal cord. Loss-of-function mutations in the Drosophila spastin gene produce larval neuromuscular junction (NMJ) phenotypes. NMJ synaptic boutons in spastin mutants are more numerous and more clustered than in wild-type, and transmitter release is impaired. spastin-null adult flies have severe movement defects. They do not fly or jump, they climb poorly, and they have short lifespans. spastin hypomorphs have weaker behavioral phenotypes. Overexpression of Spastin erases the muscle microtubule network. This gain-of-function phenotype is consistent with the hypothesis that Spastin has microtubule-severing activity, and implies that spastin loss-of-function mutants should have an increased number of microtubules. Surprisingly, however, we observed the opposite phenotype: in spastin-null mutants, there are fewer microtubule bundles within the NMJ, especially in its distal boutons. The Drosophila NMJ is a glutamatergic synapse that resembles excitatory synapses in the mammalian spinal cord, so the reduction of organized presynaptic microtubules that we observe in spastin mutants may be relevant to an understanding of human Spastin's role in maintenance of axon terminals in the spinal cord.  相似文献   

17.
18.
1. The aim of the present study was to examine the occurrence of the neuronal nitric oxide synthase immunoreactivity in the stretch reflex circuit pertaining to the quadriceps femoris muscle in the dog.2. Immunohistochemical processing for neuronal nitric oxide synthase and histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase were used to demonstrate the presence of neuronal nitric oxide synthase in the proprioceptive afferents issuing in the quadriceps femoris muscle. The retrograde tracer Fluorogold injected into the quadriceps femoris muscle was used to detect the proprioceptive afferents and their entry into the L5 and L6 dorsal root ganglia.3. A noticeable number of medium-sized intensely nitric oxide synthase immunolabelled somata (1000–2000 μm2 square area) was found in control animals in the dorsolateral part of L5 and L6 dorsal root ganglia along with large-caliber intraganglionic nitric oxide synthase immunolabelled fibers, presumed to be Ia axons. Before entering the dorsal funiculus the large-caliber nitric oxide synthase immunolabelled fibers of the L5 and L6 dorsal roots formed a massive medial bundle, which upon entering the dorsal root entry zone reached the dorsolateral part of the dorsal funiculus and were distributed here in a funnel-shaped fashion. The largest nitric oxide synthase immunolabelled fibers, 8.0–9.2 μm in diameter, remained close to the dorsal horn, while medium-sized fibers were seen dispersed across the medial portion of the dorsal funiculus. Single, considerably tapered nitric oxide synthase immunolabelled fibers, 2.2–4.6 μm in diameter, were seen to proceed in ventrolateral direction until they reached the mediobasal portion of the dorsal horn and the medial part of lamina VII. In lamina IX, only short fragments of nitric oxide synthase immunoreactive fibers and their terminal ramifications could be seen. Nitric oxide synthase immunolabelled terminals varying greatly in size were identified in control material at the base of the dorsal horn, in the vicinity of motoneurons ventrally and ventrolaterally in L5 and L6 segments and in Clarke’s column of L3 and L4 segments. Injections of the retrograde tracer Fluorogold into the quadriceps femoris muscle and cut femoral nerve, combined with nitric oxide synthase immunohistochemistry of the L5 and L6 dorsal root ganglia, confirmed the existence of a number of medium-sized nitric oxide synthase immunoreactive and Fluorogold-fluorescent somata presumed to be proprioceptive Ia neurons (1000–2000 μm2 square area) in the dorsolateral part of both dorsal root ganglia. L5 and L6 dorsal rhizotomy caused a marked depletion of nitric oxide synthase immunoreactivity in the medial bundle of the L5 and L6 dorsal roots and in the dorsal funiculus of L5 and L6 segments.4. The analysis of control material and the degeneration of the large- and medium-caliber nitric oxide synthase immunoreactive Ia fibers in the dorsal funiculus of L5 and L6 segments confirmed the presence of nitric oxide synthase in the afferent limb of the monosynaptic Ia-motoneuron stretch reflex circuit related to the quadriceps femoris muscle. Abbreviations ABC, avidin–biotin complex; bNOS, neuronal nitric oxide synthase; bNOS-IR, neuronal nitric oxide synthase immunoreactive; bNOS-IRBs, neuronal nitric oxide synthase immunoreactive boutons; cNOS, catalytic nitric oxide synthase; DAB, diaminobenzidine; DF, dorsal funiculus; DH, dorsal horn; DREZ-one, dorsal root entry zone; DRGs, dorsal root ganglia; eNOS, endothelial nitric oxide synthase; FG, Fluorogold; FN, femoral nerve; mNOS, macrophage nitric oxide synthase; NADPHd, nicotinamide adenine dinucleotide phosphate diaphorase; NBT, nitroblue tetrazolium; NO, nitric oxide; NOS, nitric oxide synthase; NOS-IR, nitric oxide synthase immunoreactive; PBS, phosphate-buffered saline; VGLUT1 and VGLUT2, vesicular glutamate transporters  相似文献   

19.
Transgenic overexpression of neurotrophin-3 (NT-3) in mice increases the number of surviving proprioceptive sensory components, including primary sensory neurons, gamma motoneurons and muscle spindles. The numbers of surviving alpha motoneurons are not affected by NT-3 overexpression (Wright et al., Neuron 19: 503- 517, 1997). We have assessed the consequences NT-3-stimulated increase in the proprioceptive sensory system by measuring locomotive abilities of mice that overexpress NT-3 in all skeletal muscles ( myo/NT-3 mice). In adulthood, one myo/NT-3 transgenic line continues to express NT-3 at high levels in muscle and maintains a hypertrophied proprioceptive system (high-OE myo/NT-3 mice). Compared to wildtypes, high-OE myo/NT-3 mice have nine times the amount of NT-3 protein in the medial gastrocnemius at six weeks of age. Although appearing normal during ordinary activity, high-OE myo/NT-3 mice display a distinct clasping phenotype when lifted by the tail. High-OE myo/NT-3 mice show severe locomotor deficits when performing beam walking and rotorod testing. These mice also demonstrate aberrant foot positioning during normal walking. However, following sciatic nerve crush, overexpression of NT-3 prevents further abnormalities in paw positioning, suggesting NT-3 may attenuate sensorimotor deficits that occur in response to sciatic nerve injury. Our results suggest that increases in proprioceptive sensory neurons, spindles and gamma motoneurons, along with continued postnatal NT-3 overexpression in muscle significantly disrupt normal locomotor control. Importantly, however, NT-3 may lessen initial deficits and thus improve functional recovery after peripheral nerve injury, suggesting these mice may serve as a good model to study NT-3's role in neuroprotection of proprioceptive afferents.  相似文献   

20.
MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods. Here we screen conserved 3′ UTR sequences from the Drosophila melanogaster genome for potential miRNA targets. The screening procedure combines a sequence search with an evaluation of the predicted miRNA–target heteroduplex structures and energies. We show that this approach successfully identifies the five previously validated let-7, lin-4, and bantam targets from a large database and predict new targets for Drosophila miRNAs. Our target predictions reveal striking clusters of functionally related targets among the top predictions for specific miRNAs. These include Notch target genes for miR-7, proapoptotic genes for the miR-2 family, and enzymes from a metabolic pathway for miR-277. We experimentally verified three predicted targets each for miR-7 and the miR-2 family, doubling the number of validated targets for animal miRNAs. Statistical analysis indicates that the best single predicted target sites are at the border of significance; thus, target predictions should be considered as tentative until experimentally validated. We identify features shared by all validated targets that can be used to evaluate target predictions for animal miRNAs. Our initial evaluation and experimental validation of target predictions suggest functions for two miRNAs. For others, the screen suggests plausible functions, such as a role for miR-277 as a metabolic switch controlling amino acid catabolism. Cross-genome comparison proved essential, as it allows reduction of the sequence search space. Improvements in genome annotation and increased availability of cDNA sequences from other genomes will allow more sensitive screens. An increase in the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection. While the screen is likely to miss some targets, our study shows that valid targets can be identified from sequence alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号