首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tiina Nõges 《Hydrobiologia》1996,338(1-3):91-103
The material for pigment analysis was collected 1–3 times a year from Lake Peipsi-Pihkva in 1983, 1987, 1988, 1991 and 1992–1995. Concentrations of chlorophyll a, b and c (Chla, Chlb, Chlc), pheopigment (Pheo) and adenosine triphosphate (ATP) were measured biweekly in 1985–1986. The mean of all Chla values was 20.2 mg m–1 (median 13.3 mg m–1) indicating the eutrophic state of the lake. Average Chlb, Chlc, Pheo and carotenoid (Car) contents were 3.7 mg m–3, 4.1 mg m–3, 3.0 mg m–3 and 4.8 mg m–3, respectively. The average Chlb/Chla ratio was 22.9%, Chlc/Chla 23.4%, Pheo/Chla 38%, Car/Chla 37% and ATP/Chla 3%, the medians being 14.3, 13.6, 17.5, 39.4 and 1.9%, respectively. The proportion of Chla in phytoplankton biomass was 0.41%, median 0.32%. There were no significant differences in temperature, oxygen concentration, Chla, and ATP between the surface and bottom water; the lake was polymictic during the vegetation period. The Chla concentration had its first peak in May followed by a decrease in June and July. In late summer Chla increased again achieving its seasonal maximum in late autumn. The ATP concentration was the highest during spring and early summer, decreasing drastically in autumn together with the decline of primary production. ATP/Chla was the highest during the clear water period in June and early July, which coincided also with the high proportion of Chla in phytoplankton biomass. The highest Chla occurred in November (average 37.2 mg m–3) when Secchi transparency was the lowest (1.05 m). Concentrations of Chlb, Chlc and carotenoids were the highest in August, that of Pheo in June. Concentrations of Chla and other pigments were the lowest in the northern part of Lake Peipsi (mean 14.7 mg m–3, median 12.5 mg m–3) and the highest in the southern part of Lake Pihkva (mean 47.9 mg m–3, median 16.3 mg m–3). An increase of Chla and decrease of Secchi depth could be noticed in 1983–1988, while in 1988–1994 the tendency was opposite.  相似文献   

2.
Magnitude and long-term periodicity of summer-autumn blooms of the nitrogen-fixing cyanobacterium, Nodularia spumigena, were characterized for hyposaline Pyramid Lake, Nevada, from Landsat MSS band 3 film negatives. Predicted lakewide mean chlorophyll a concentrations for Landsat overpasses during the July–October Nodularia bloom season ranged from 27 to 72 mg m–3 with an overall average concentration of 32 ± 7 mg m–3 between 1972 and 1986. Nodularia blooms were usually annual events. Blooms were not observed on Landsat images in only three of 15 years (1973, 1980, 1982) and midsummer calcium carbonate whitings occurred in two of these years (1973, 1980). Magnitude of Nodularia blooms was highly variable among years and very large blooms, where maximum mean chlorophyll a concentration exceeded one standard deviation of the 15 year overall mean (> 39 mg m–3) appeared in 1974, 1975, 1977, 1979, 1984, 1985 and 1986. Very large early-July blooms always occurred during or following years of above average fluvial discharge to Pyramid Lake (1984–1986) and were associated with meromixis produced by the large influx of freshwater.Several problems arise using Landsat remote sensing to estimate magnitude and periodicity of scum-forming blue-green algal blooms. These complications may reduce accuracy and precision of phytoplankton biomass estimates made from Landsat images. Nevertheless, Landsat remote sensing enabled us to quantify relative bloom magnitude with limited collection of ground-based data and at a large-scale temporal and spatial resolution not possible using alternative methodologies.  相似文献   

3.
Summary Daily rates of gross and net primary production were calculated in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988 (EPOS, Leg 2) on the basis of kinetic experiments, which combine radiotracer technology and classic biochemical procedures, and by taking into account the light regime, the physical structure of the water column, the vertical distribution of chlorophyll a, and the protozoan grazing pressure. From these calculations, three distinct sub-areas were identified: the Closed Pack Ice Zone (CPIZ), characterized by the lowest average gross primary production (0.36 gC · m–2 · day–1); the Marginal Ice Zone (MIZ) with a maximum mean value of 1.76 gC · m–2 · day–1; and the Open Ocean Zone off the ice edge (OOZ) with an intermediate mean value of 0.87 gC · m–2 · day–1. Net primary production fluctuated nearly in the same proportions, averaging 0.55, 0.2 and 1.13 gC · m–2 · day–1 in the OOZ, CPIZ and MIZ respectively, representing 53% of the total photo-assimilated carbon under heavy ice cover (CPIZ) and 64% in the two other areas. Available light, strongly dependent on the ice cover, was shown to control the level of primary production in the sea ice associated sub-areas, whilst protozoa grazing on phytoplankton determined the moderate primary production level characteristic of the well illuminated OOZ area.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

4.
Time series of satellite‐derived surface chlorophyll‐a concentration (Chl) in 1997–2009 were used to examine for trends in the timing of the annual phytoplankton bloom maximum. Significant trends towards earlier phytoplankton blooms were detected in about 11% of the area of the Arctic Ocean with valid Chl data, e.g. in the Hudson Bay, Foxe Basin, Baffin Sea, off the coasts of Greenland, in the Kara Sea and around Novaya Zemlya. These areas roughly coincide with areas where ice concentration has decreased in early summer (June), thus making the earlier blooms possible. In the selected areas, the annual phytoplankton bloom maximum has advanced by up to 50 days which may have consequences for the Arctic food chain and carbon cycling. Outside the Arctic, the annual Chl maximum has become earlier in boreal North Pacific but later in the North Atlantic.  相似文献   

5.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

6.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

7.
Mathematical modelling was used to explore the seasonal and annual variability of primary, new and secondary production as well as sedimentation between 72° and 80°N in the central Barents Sea during the years 1981 to 1983. 1981 and 1982 were years with extensive ice coverage while 1983 experienced little sea-ice. The phytoplankton spring bloom started usually in April/May at about 75°N and was delayed from May/June in the south to August/September in the north as a function of thermal stratification and sea-ice dynamics. The model indicates that several, simultaneous spring bloom events, separated in space, can be found, especially during years with low ice coverage. The annual estimates of primary production, secondary production and sedimentation decreased on average from 73, 7.3 and 48 to 18, 1.8 and 9 g C m–2 year–1 between the southern and the northern part of the Barents Sea respectively. The annual estimates of particulate carbon flux were much higher in 1983 compared to 1981–1982, especially in the north where up to 6 times higher rates were calculated for 1983. The number of zooplankton species present in spring in the southern Barents Sea is governed by over-wintering success, but probably also influenced by advection of Atlantic water. The model was run for Atlantic water with 10,000, 3,000 or none copepods per m2 present in March, indicating that sedimentation can vary between 38 and 61 g C m–2 year–1 due to zooplankton grazing alone. This suggests that the supply of organic carbon to the aphotic zone of the Barents Sea is only partly determined by the strength and duration of phytoplankton blooms, but strongly influenced by zooplankton dynamics.  相似文献   

8.
Biomass and production of plankton communities were investigated in two Chinese integrated fish culture ponds in August, Dianshanhu Pond (with high density of planktivorous carp) and Pingwang Pond (with low density of planktivorous carp). The plankton communities were composed of rotifers, protozoans, phytoplankton (<40 µm) and bacteria. The large phytoplankton (>40 µm), cladocerans and copepods were rare because of grazing pressure by the carp. The density or biomass of bacteria (1.93 × 107 and 2.20 × 107 cells ml–1 on average in Dianshanhu and Pingwang Ponds, respectively), picophytoplankton (24.6 and 18.5 mg m–3 Chla on average) and rotifers (5372 and 20733 ind. 1–1 on average) exceeded the maximum values reported for natural waters.The average [3H]thymidine uptake rates were 694 and 904 pmoles 1–1 h–1 (13.4 and 20.6 µgC 1–1) and the bacterial production by the >2 µm fraction amounted 21–28% of total [3H] thymidine uptake rate in both ponds. The mean chlorophylla concentrations were 59.1 and 183 mg m–3 in Dianshanhu and Pingwang Ponds, respectively. 82.4% and 65.3% of the total Chla was contributed by the <10 µm nano- and picophytoplankton in each pond, respectively. In particular, the picophytoplankton contribution amounted 41.2% of thtal Chla in Dianshanhu Pond. Primary production was 2.5 and 3.4 gC m–2 d–1 in each pond, respectively, and >50% of production was contributed by picophytoplankton. The mean biomasses of protozoa were 168 µg 1–1 and 445 µg 1–1 and those of rotifers were 763 µg 1–1 and 1186 µg 1–1 in Dianshanhu and Pingwang Ponds, respectively. The ecological efficiencies expressed in terms of the ratios of primary production to zooplankton production were 0.22 and 0.31, for the two ponds.  相似文献   

9.
Summary Photosynthesis-irradiance relationships and the carbon metabolism of different ice algal assemblages collected from Weddell Sea pack ice were investigated during the EPOS 1 cruise. Infiltration- and interstitial assemblages exhibited the photosynthetic characteristics of high-light adapted ice algae with a mean assimilation number of 1.81±0.93 mg C (mg Chl a)–1 h–1. A higher light harvesting efficiency under light limited conditions (alphaB-value), as well as a lower light intensity for light saturation (IK-value) was determined for the interstitial assemblage. An increase in light intensity from 3.5 to 106 mol m–2s–1 resulted in increased synthesis of polymeric carbohydrates (presumably reserve material) in a band assemblage. However, the absolute incorporation of radiolabel into lipid- and amino acid fractions remained essentially constant over this range of photon flux densities. Light-saturated rates of photosynthesis of three infiltration assemblages under hypersaline conditions (approx. 50 and 110%) decreased by 13–55% (controls: approx. 32–34%). The adverse effect of salinity treatment was much less pronounced under hyposaline conditions (approx. 20), where maximal photosynthetic rates were only slightly decreased (-9%) or even stimulated (14–22%). These observations suggest that sea ice microalgae in the ice edge region of the Weddell Sea during spring, being in a metabolically active stage, may have the potential to initiate or contribute to phytoplankton blooms upon release into the water column.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

10.
The phytoplankton community of a eutrophic reservoir   总被引:1,自引:0,他引:1  
The dynamics of the phytoplankton community of a eutrophic reservoir are described for a two year period. Fifty-eight species were recorded, 25 of them common. Bacillariophyta dominated during the winter and early spring and Chlorophyta during late spring, to be replaced by a bloom of Cyanophyta. The mean and peak biomass of phytoplankton was 8.6 mg 1–1 and 40.8 mg 1–1 in 1981, and 8.3 mg 1–1 and 37.6 mg 1–1 in 1982. Temperature accounted for 67.3% and pH for 8% of the variation in total phytoplankton biomass over the two year period, using a multiple regression technique.Both horizontal and vertical patchiness, measured as an index of mean crowding, were recorded in the reservoir. Horizontal aggregations were associated with spring blooms of Chlorophyta and summer blooms of Cyanophyta, while vertical aggregations were most marked during the summer bloom of Cyanophyta. Concentrations of phytoplankton were influenced by wind, the prevailing southwesterly wind accumulating algae in the northeasterly arm of the reservoir during much of the year.  相似文献   

11.
The quantitative and qualitative distribution of phytoplankton was investigated along five North–South transects in the eastern Weddell Sea during the transition from late autumn to winter. Relationships with the regional hydrography, progressing sea ice coverage, nutrient distribution and zooplankton are discussed and compared with data from other seasons. To the north of the Antarctic Slope Front (ASF) a remnant temperature minimum layer was found above the primary pycnocline throughout summer. Surface waters had not entirely acquired typical winter characteristics. While temperature was already in the winter range, this was not the case for salinity. Highest biomass of phytoplankton, with the exception of the first transect, was found in the region adjoining the ASF to the north. Absolute chlorophyll a (Chl a) concentrations dropped from 0.35 to 0.19 g l–1 . Nutrient pools exhibited a replenishing tendency. Ammonium concentrations were high (0.75–2 mol l–1), indicating extensive heterotrophic activity. The phytoplankton in the ASF region was dominated by nanoflagellates, particularly Phaeocystis spp.. North of the ASF the abundance of diatoms increased, with Fragilariopsis spp., F. cylindrus and Thalassiosira spp. dominating. Community structure varied both due to hydrographical conditions and the advancing ice edge. The phytoplankton assemblage formed during late autumn were very similar to the ones found in early spring. A POC/PON ratio close to Redfield, decreasing POC concentration and a high phaeophytin/Chl a ratio, as well as a high abundance of mesozooplankton indicated that a strong grazing pressure was exerted on the phytoplankton community. A comparison between primary production (PP) in the water column and the sea ice showed a shift of the major portion of PP into the ice during the period of investigation.  相似文献   

12.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

13.
Population dynamics of bacteria in Arctic sea ice   总被引:3,自引:0,他引:3  
The dynamics of bacterial populations in annual sea ice were measured throughout the vernal bloom of ice algae near Resolute in the Canadian Arctic. The maximum concentration of bacteria was 6.0·1011 cells·m–2 (about 2.0·1010 cells·l–1) and average cell volume was 0.473 m3 in the lower 4 cm of the ice sheet. On average, 37% of the bacteria were epiphytic and were most commonly attached (70%) to the dominant alga,Nitzschia frigida (58% of total algal numbers). Bacterial population dynamics appeared exponential, and specific growth rates were higher in the early season (0.058 day–1), when algal biomass was increasing, than in the later season (0.0247 day–1), when algal biomass was declining. The proportion of epiphytes and the average number of epiphytes per alga increased significantly (P<0.05) through the course of the algal bloom. The net production of bacteria was 67.1 mgC·m–2 throughout the algal bloom period, of which 45.5 mgC·m–2 occurred during the phase of declining algal biomass. Net algal production was 1942 mgC·m–2. Sea ice bacteria (both arctic and antarctic) are more abundant than expected on the basis of relationships between bacterioplankton and chlorophyll concentrations in temperate waters, but ice bacteria biomass and net production are nonetheless small compared with the ice algal blooms that presumably support them.  相似文献   

14.
Thomas Mock 《Hydrobiologia》2002,470(1-3):127-132
An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The light transmission was improved by the construction of a cylindrical frame instead of using a transparent acrylic-glass barrel. The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice, which is an important component in the sea ice ecosystem of the Antarctic Ocean. The rates of carbon assimilation of the interior algal assemblage (top to 5 cm from bottom) was 0.25 mg C m–2 d–1 whereas the bottom algal community (lowest 5 cm) attained only 0.02 mg C m–2 d–1. Chl a specific production rates (PChl) for bottom algae (0.020 – 0.056 g C g chl a –1 h–1) revealed strong light limitation, whereas the interior algae (PChl = 0.7 – 1.2 g C g chl a –1 h–1) were probably more limited by low temperatures (< –5 °C) and high brine salinities.  相似文献   

15.
Summary Phytoplankton primary production, biomass, species composition and sedimentation of organic matter (using a moored and a free drifting sediment trap) were measured in eastern Bransfield Strait during spring 1983. Biomass and primary production increased from low levels in late November (1 mgChla m-3 and 400 mgC m-2 d-1) to bloom levels by the end of December (5 mgChla m-3 and 1000 mgC m-2 d-1). The moored trap was deployed at 323 m depth for 22.5 days, and collected 2968 mgC and 67.6 mg chlorophyll a and derivatives per m2 (132 and 3.0 mg m-2 d-1), of which 90% was in the form of krill faeces. These figures are regarded as egestion of krill, and using ingestion: egestion ratios from the literature, grazing loss of phytoplankton by krill was estimated at 45% of the primary production during a period of 3 weeks. Large-scale surveys of phytoplankton standing stock indicate that the build-up of blooms during spring is apparently not controlled by krill grazing. It is therefore suggested that the intense grazing that must have occurred over the trap during the period of deployment was only of local importance.  相似文献   

16.
A high resolution study of chlorophyll a and primary production distribution was carried out in the Atlantic sector of the Southern Ocean during the austral summer of 1990–91. Primary production (14C assimilation) and photosynthetic capacity levels at frontal systems were among the highest recorded during the cruise (2.8–6.3 mgC·m–3·h–1, and 1.3–4.7mgC·mgChl a –1·h–1, respectively). Blooms at ocean fronts were strongly dominated by specific size classes and species. This suggests that the increase in biomass was probably the result of an enhancement of in situ production by selected components of the phytoplankton assemblage, rather than accumulation of cells through hydrographic forces. This hypothesis is supported by the high variability of photosynthetic capacities at adjacent stations along the transects. Blooms (ca 2.7–3.5 mg Chl a·m–3) were found at three oceanic fronts (the Subtropical, Subantarctic and Antarctic Polar Fronts) during the early summer. These were equivalent to, or denser than, blooms in the Marginal Ice Zone and at the Continental Water Boundary. Seasonal effects on phytoplankton community structure were very marked. In early summer (December), netphyto-plankton (>20 m) was consistently the major component of the frontal blooms, with the chain-forming diatoms Chaetoceros spp. and Nitzschia spp. dominating at the Subantarctic and Antarctic Polar Fronts, respectively. During late summer (February), nanophytoplankton (1–20 m) usually dominated algal communities at the main frontal areas. Only at the Antarctic Polar Front did netphytoplankton dominate, with the diatom component consisting almost exclusively of Corethron criophilum. An early to late summer shift of maximum phytoplankton biomass from north to south of the Antarctic Polar Front was observed. Spatial covariance between silicate levels and water-column stability appeared to be the main factor controlling phytoplankton production at the Antarctic Polar Front. Low silicate concentrations may have limited diatom growth at the northern edge of the front, while a deep mixed layer depth reduced production at the southern edge of the front.  相似文献   

17.
Mesozooplankton community structure and grazing impact were investigated at 15 stations in the west-Indian sector of the Polar Frontal Zone during the third dynamics of Eddie impacts on Marions ecosystem cruise, conducted during April 2004. An intense frontal feature, likely the convergence of the Sub-Antarctic and Antarctic Polar Fronts, was identified running in a north-eastward direction across the survey area. Total integrated chlorophyll-a (chl-a) biomass ranged from 4.15 mg m–2 to 22.81 mg m–2 and was dominated by picophytoplankton at all stations. Mesozooplankton abundances ranged from 163.84 ind m–2 to 2,478.08 ind m–2 and biomass between 6.70 mg Dwt. m–2 and 23.40 mg Dwt. m–2. The mesozooplankton community was dominated almost entirely by copepods, which contributed between 35% and 79% (mean=63%; SD=±12%) of the total numbers. The pteropoda, Limacina retroversa, contributed up to 30% (mean=10%; SD=± 8%) of the total numbers. Numerical analysis identified two distinct mesozooplankton communities separated by the intense frontal feature, namely the Antarctic and the Sub-Antarctic Zone Groups. Ingestion rates of the four numerically dominant copepod species (Calanus simillimus, Clausocalanus spp., Ctenocalanus spp. and Oithona similis) and the pteropod, L. retroversa, were estimated using the gut fluorescence technique. Total grazing impact ranged from 0.156 mg (pigm) m–2 to 2.958 mg (pigm) m–2 or between 1% and 29% of the available chl-a per day. The four copepods contributed approximately 36% of the total daily grazing impact, while the pteropod contributed to a mean of 64%, indicating that this zooplankton group may play an important role in the Southern Ocean carbon cycle. In general, the highest daily grazing impact was exhibited in the Antarctic Zone Group (mean=12% phytoplankton standing stock per day).  相似文献   

18.
In three intertidal sand bottom communities of the Königshafen (Island of Sylt, North Sea), the biomass production and respiration of phytobenthos, phytoplankton, macrozoobenthos, and in situ community metabolism were measured monthly during 1980. The study sites were characterized by different communities (Nereis-Corophium-belt, seagrass-bed,Arenicola-flat) and by a high abundance of the molluscHydrobia ulvae. Benthic diatoms are the major constituents of plant biomass in theArenicola-flat. In this community, gross primary productivity amounts to 148 g C m–2 a–1. 82 % of this productivity is caused by microbenthos, whereas phytoplankton constitutes only 18 %. In the seagrass-bed, gross primary productivity amounts to 473 g C m–2 a–1. 79 % of this is generated by seagrass and its epiphytes, whereas microphytobenthos contributes 19 %. In theNereis-Corophium-belt, only microphytobenthos is important for biomass and primary productivity (gross: 152 g C m–2 a–1). Annual production of macrofauna proved to be similar in theArenicola-flat (30 g C m–2 a–1) to that in the seagrass-bed (29 g C m–2 a–1). Only one third of this amount is produced in theNereis-Corophium-belt (10 g C m–2 a–1). The main part of secondary production and animal respiration is contributed by grazingH. ulvae. In the seagrass-bed, 83 % of the energy used for production is obtained from the grazing food chain. In theArenicola-flat and theNereis-Corophium-belt, the importance of non-grazing species is greater. A synchrony of seasonal development of plant biomass and monthly secondary production was observed. In theArenicola-flat and the seagrass-bed, where density and production of macrofauna are high, a conspicuous decrease in biomass of microbenthos occurs during the warmer season, whereas in theNereis-Corophium-belt primary production causes an increase in microphytobenthic biomass in summer and autumn. Energy flow through the macrofauna amounts to 69 g C m–2 a–1 in theArenicola-flat, 85 g C m–2 a–1 in the seagrass-bed and 35 g C m–2 a–1 in theNereis-Corophium-belt. Based on the assumption that sources of food are used in proportion to their availability, 49 g C m–2 a–1 (Arenicola-flat), 72 g C m–2 a–1 (seagrass-bed) and 26 g C m–2 a–1 (Nereis-Corophium-belt) are estimated as taken up by the grazing food chain. All three subsystems are able to support the energy requirements from their own primary production and are not dependent on energy import from adjacent ecosystems.  相似文献   

19.
The regulatory role of viruses on population dynamics of the prymnesiophyte Phaeocystis globosa was studied during a mesocosm experiment in relation to growth and loss by microzooplankton grazing and cell lysis. The mesocosms were conducted under varying light conditions (20 and 150 μmol photons m−2 s−1) and nutrient regime (inorganic nitrogen to phosphorus ratios of 4, 16 and 44). Overall, viruses infecting P. globosa (PgV) were found to be an important cause of cell lysis (30–100% of total lysis) and a significant loss factor (7–67% of total loss). We demonstrate that the morphology of P. globosa cells (solitary versus colonial) differently regulated viral control of P. globosa bloom formation. Reduced irradiance (20 μmol photons m−2 s−1) was provided for 11 days to select for the solitary cell morphotype. Viruses were able to restrict P. globosa bloom formation even after irradiance became saturating again (150 μmol photons m−2 s−1). Saturating light conditions from the start of the experiment allowed colony formation and because the colony-morphotype acted as a mechanism reducing viral infection bloom formation succeeded. Nutrient depletion, however, affected specifically the colonies that disintegrated while releasing single cells. Virus infection of these solitary cells resulted in the termination of the bloom. The nature of phytoplankton growth-limiting nutrient (nitrate and/or orthophosphate) did not seem to noticeably affect the level of viral control.  相似文献   

20.
The seasonal development and decline of phytoplankton was investigated in the eastern Weddell Sea during summer and fall 1991. During the first half of the study (15 Jan–13 Feb) in an area off Vestkapp, favourable irradiance/mixing regimes initiated net phytoplankton growth in ice-free waters on the shelf and in stretches of open water over the partially ice-covered deep ocean. Chi a concentrations in the upper water column were moderate (0.2–0.8 g l–1), but significantly above winter values. Later in the season (16 Feb–11 March), a phytoplankton bloom with surface Chl a concentrations ranging from 1.6–2.3 g l–1 was encountered in an area further to the east. We suggest that the upper water column must have been stratified in this region for time scales of weeks to faciliate bloom development. Bacterial biomass and productivity generally paralleled the seasonal development of the phytoplankton. Nitrate concentrations in the upper mixed layer were substantially lower than would be expected from the existing phytoplankton standing stock, suggesting that heterotrophic consumption of organic matter by bacteria and zooplankton removed a large fraction of the primary production. The shallow seasonal pycnocline was eventually eroded by the passage of a storm, resulting in a homogeneous distribution of phytoplankton biomass over the entire water column, followed by sedimentation and deposition of phytodetritus on the sea floor. After the storm induced destratification, bacterial productivity was particularly high, amounting to more than half of the primary production (range: 10%–120%) in the upper water column. Subsequently, phytoplankton biomass in the upper water column decreased to values <1 g Chl a l–1. The combination of low incident irradiances and incessant deep mixing prevented the phytoplankton biomass to increase again. During the last week of the investigation, extensive new-ice formation was observed. A major fraction of the residual surface plankton was incorporated into new sea ice, thus terminating the pelagic growth season of the phytoplankton in the eastern Weddell Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号