首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

2.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defined by one temperature range but varied between sites with different temperature ranges. Individual DGGE bands were sequenced, and the sequences were compared with those previously obtained from the mat by cloning and from cultivated Octopus Spring isolates. Two known cyanobacterial populations and one known green nonsulfur bacterium-like population were detected by DGGE, as were many new cyanobacterial and green nonsulfur and green sulfur bacterium-like populations and a novel bacterial population of uncertain phylogenetic affiliation. The distributions of several cyanobacterial populations compared favorably with results obtained previously by oligonucleotide probe analyses and suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar.  相似文献   

3.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

4.
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.  相似文献   

5.
Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.  相似文献   

6.
Recent molecular studies have shown a great disparity between naturally occurring and cultivated microorganisms. We investigated the basis for disparity by studying thermophilic unicellular cyanobacteria whose morphologic simplicity suggested that a single cosmopolitan species exists in hot spring microbial mats worldwide. We found that partial 16S rRNA sequences for all thermophilic Synechococcus culture collection strains from diverse habitats are identical. Through oligonucleotide probe analysis and cultivation, we provide evidence that this species is strongly selected for in laboratory culture to the exclusion of many more-predominant cyanobacterial species coexisting in the Octopus Spring mat in Yellowstone National Park. The phylogenetic diversity among Octopus Spring cyanobacteria is of similar magnitude to that exhibited by all cyanobacteria so far investigated. We obtained axenic isolates of two predominant cyanobacterial species by diluting inocula prior to enrichment. One isolate has a 16S rRNA sequence we have not yet detected by cloning. The other has a 16S rRNA sequence identical to a new cloned sequence we report herein. This is the first cultivated species whose 16S rRNA sequence has been detected in this mat system by cloning. We infer that biodiversity within this community is linked to guild structure.  相似文献   

7.
Recent molecular studies have shown a great disparity between naturally occurring and cultivated microorganisms. We investigated the basis for disparity by studying thermophilic unicellular cyanobacteria whose morphologic simplicity suggested that a single cosmopolitan species exists in hot spring microbial mats worldwide. We found that partial 16S rRNA sequences for all thermophilic Synechococcus culture collection strains from diverse habitats are identical. Through oligonucleotide probe analysis and cultivation, we provide evidence that this species is strongly selected for in laboratory culture to the exclusion of many more-predominant cyanobacterial species coexisting in the Octopus Spring mat in Yellowstone National Park. The phylogenetic diversity among Octopus Spring cyanobacteria is of similar magnitude to that exhibited by all cyanobacteria so far investigated. We obtained axenic isolates of two predominant cyanobacterial species by diluting inocula prior to enrichment. One isolate has a 16S rRNA sequence we have not yet detected by cloning. The other has a 16S rRNA sequence identical to a new cloned sequence we report herein. This is the first cultivated species whose 16S rRNA sequence has been detected in this mat system by cloning. We infer that biodiversity within this community is linked to guild structure.  相似文献   

8.
A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.  相似文献   

9.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification "microbialite" origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

10.
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.  相似文献   

11.
The Ancaster sulfur spring is a cold (9°C) sulfur spring located near Ancaster, Ontario, Canada, which hosts an abundant and diverse microbial mat community. We conducted an extensive microscopical study of the microbial community of this spring using a number of techniques: phase light, confocal scanning laser microscopy, conventional scanning electron microscopy using both chemical/critical point drying and cryofixation preparative techniques, environmental scanning electron microscopy, and transmission electron microscopy. The latter two techniques were coupled with energy dispersive X-ray spectrometry for elemental analysis to complement wet geochemical data collected on bulk spring water and mat pore water. In the anoxic source of the spring, green and purple sulfur bacteria were found together with a sulfide-utilizing type of cyanobacteria that had the unusual characteristic of storing colloidal sulfur intracellularly. Deeper within the source, the mats were dominated by green sulfur bacteria and thick biofilms of cells that precipitated Fe and Zn sulfide minerals on their surfaces. Downstream from the source, thick, filamentous white mats lined the stream channel, formed by a diverse mass of nonphotosynthetic sulfur oxidizers, which were responsible for forming thick masses of spherical colloidal sulfur. These were distinguished by ESEM-EDS from cells by their simple elemental composition (only S was detected). Aqueous geochemistry analysis by ICP-MS showed that some elements (Fe, C, P, Zn, Mg, Ba) were present at higher levels in mat pore water than in bulk spring water. Our approach allowed us to gain an appreciation of the characteristics of this microbial community and allowed us to develop a good understanding of the types of microorganisms present and infer some of the relationships among the members of the community. In addition, we wish to convey the utility of a thorough microscopical approach in geomicrobiological and microbial ecology studies.  相似文献   

12.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

13.
Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.  相似文献   

14.
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986-2001). The effluent water temperature ranged from 72 to 74 degrees C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial fouling appears with a decrease in the temperature to 62 degrees C and in the sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45 degrees C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5-9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40-32 degrees C, which is 10 to 15 degrees C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40 degrees C. Total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40 degrees C. The rate of methanogenesis did not exceed 1.188 micrograms C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

15.
Dense microbial mats and streamers of various colors developed in an alkaline-hot spring water at 48-76 degrees C and ~0.077 mm sulfide in Nakabusa, Japan. The microbial community structures with a thermal gradient were compared by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR-amplified 16S ribosomal RNA gene fragments. The sequence analysis revealed that a predominant cyanobacterial DGGE band phylogenetically related to Synechococcus elongatus was detected only from green mats at 48 degrees C. Four DGGE bands were detected commonly from green mats at 48 degrees C, orange mats at 58 degrees C and brown mats at 60 degrees C. The sequence analysis revealed that these were phylogenetically related to Chloroflexaceae group, Rhodothermus group, a candidate division OP10, and an unclassified bacterium. On the other hand, Aquificae-, Thermodesulfobacteria-, Thermus group-, and Crenarchaeota-like sequences were detected as a predominant component of DGGE profiling from the streamers only at temperatures over 66 degrees C, but no phototrophic bacterial bands were detected. Thus, the microbial community structure above 60 degrees C was drastically different from that at the lower temperatures. After the addition of hydrogen into in vitro gray streamers with in situ spring water, sulfide production markedly occurred in the presence of ambient sulfate at 66 degrees C. This result suggests that in situ sulfide is partly produced by Thermodesulfobacteria-like sulfate-reducing bacteria in the streamers.  相似文献   

16.
狮子头热泉菌席样品环境总DNA提取方法的比较研究   总被引:1,自引:0,他引:1  
通过对狮子头热泉7个环境菌席样品所提取的总DNA进行纯度检测、提取得率计算和DGGE分析,比较了3种直接和1种间接DNA提取方法。结果表明:综合利用多种裂解方式比单一裂解方式更能充分释放环境DNA;其中3种方法获得的DNA片段能够进行后续16S rDNA扩增;针对同一样品,不同方法提取的环境DNA,可获得不同DGGE群落指纹图谱;间接提取法提取的总DNA,能更好地反映狮子头热泉菌席的微生物多样性。  相似文献   

17.
A variety of contemporary techniques were used to investigate the vertical distribution of thermophilic unicellular cyanobacteria, Synechococcus spp., and their activity within the upper 1-mm-thick photic zone of the mat community found in an alkaline siliceous hot spring in Yellowstone National Park in Wyoming. Detailed measurements were made over a diel cycle at a 61 degrees C site. Net oxygenic photosynthesis measured with oxygen microelectrodes was highest within the uppermost 100- to 200-microm-thick layer until midmorning, but as the day progressed, the peak of net activity shifted to deeper layers, stabilizing at a depth of 300 microm from midday throughout the afternoon. Examination of vertical thin sections by bright-field and autofluorescence microscopy revealed the existence of different populations of Synechococcus which form discrete bands at different vertical positions. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments from horizontal cryosections obtained at 100-microm-thick vertical intervals also suggested vertical stratification of cyanobacterial, green sulfur bacterium-like, and green nonsulfur bacterium-like populations. There was no evidence of diel migration. However, image analysis of vertical thin sections revealed the presence of a narrow band of rod-shaped Synechococcus cells in which the cells assumed an upright position. These upright cells, located 400 to 800 microm below the surface, were observed only in mat samples obtained around noon. In mat samples obtained at other time points, the cells were randomly oriented throughout the mat. These combined observations reveal the existence of a highly ordered structure within the very thin photic zone of this hot spring microbial mat, consisting of morphologically similar Synechococcus populations that are likely to be differentially adapted, some co-occurring with green sulfur bacterium-like populations, and all overlying green nonsulfur bacterium-like populations.  相似文献   

18.
The structure and production characteristics of microbial communities from the Urinskii alkaline hot spring (Buryat Republic, Russia) have been investigated. A distinctive characteristic of this hot spring is the lack of sulfide in the issuing water. The water temperature near the spring vents ranged from 69 to 38.5 degrees C and pH values ranged from 8.8 to 9.2. The total mineralization of water was less than 0.1 g/liter. Temperature has a profound effect on the species composition and biogeochemical processes occurring in the algal-bacterial mats of the Urinskii hot spring. The maximum diversity of the phototrophic community was observed at the temperatures 40 and 46 degrees C. A total of 12 species of cyanobacteria, 4 species of diatoms, and one species of thermophilic anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, have been isolated from mat samples. At temperatures above 40 degrees C, the filamentous cyanobacterium Phormidium laminosum was predominant; its cell number and biomass concentration were 95.1 and 63.9%, respectively. At lower temperatures, the biomass concentrations of the cyanobacterium Oscillatoria limosa and diatoms increased (50.2 and 36.4%, respectively). The cyanobacterium Mastigocladus laminosus, which is normally found in neutral or slightly acidic hydrothermal systems, was detected in microbial communities. As the diatom concentration increases, so does the dry matter concentration in mats, while the content of organic matter decreases. The concentrations of proteins and carbohydrates reached their maximum levels at 45-50 degrees C. The maximum average rate of oxygenic photosynthesis (2.1 g C/m2 day), chlorophyll a content (343.4 mg/m2), and cell number of phototrophic microorganisms were observed at temperatures from 45 to 50 degrees C. The peak mass of bacterial mats (56.75 g/m2) occurred at a temperature of 65-60 degrees C. The maximum biomass concentration of phototrophs (414.63 x 10(-6) g/ml) and the peak rate of anoxygenic photosynthesis [0.42 g C/(m2 day)] were observed at a temperature of 35-40 degrees C.  相似文献   

19.
Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities.  相似文献   

20.
Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Community diversity of microbial mat samples was assessed at 8:00 a.m. and 3:00 p.m. in a combined analysis consisting of 16S rRNA-denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) profiles. The divergence index determined from PLFA and DGGE data showed that depth-related differences have a greater influence on diversity than temporal variations. Shannon and Simpson indices yielded similar values in all samples, which suggested the stable maintenance of a structurally diverse microbial community. The increased diversity observed at 3:00 p.m. between 2.5 and 4 mm can be explained mainly by diversification of anaerobic microorganisms, especially sulfate-reducing bacteria. In the afternoon sampling, the diversity index reflected a higher diversity between 4 and 5.5 mm depth, which suggested an increase in the diversity of strict anaerobes and fermenters. The results are consistent with the conclusion that hypersaline microbial mats are characterized by high degree of diversity that shifts in response to the photobiological adaptations and metabolic status of the microbial community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Dedicated to the memory of David C. White.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号