共查询到20条相似文献,搜索用时 15 毫秒
1.
Research over the last 5 years has firmly established that learning and memory abilities, as well as mood, can be influenced by diet, although the mechanisms by which diet modulates mental health are not well understood. One of the brain structures associated with learning and memory, as well as mood, is the hippocampus. Interestingly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. The level of neurogenesis in the adult hippocampus has been linked directly to cognition and mood. Therefore, modulation of adult hippocampal neurogenesis (AHN) by diet emerges as a possible mechanism by which nutrition impacts on mental health. In this study, we give an overview of the mechanisms and functional implications of AHN and summarize recent findings regarding the modulation of AHN by diet. 相似文献
2.
3.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system. 相似文献
4.
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions—the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100β. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish. 相似文献
5.
6.
von Bohlen Und Halbach O 《Cell and tissue research》2007,329(3):409-420
Neurogenesis in the adult dentate gyrus (DG) of the hippocampus occurs constitutively throughout postnatal life, and the rate
of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. Adult neurogenesis
includes the process in which the division of a precursor cell takes place and the multi-step process (proliferation, differentiation,
migration, targeting, and synaptic integration) that ends with the formation of a postmitotic functionally integrated new
neuron. During specific time-frames of adult neurogenesis, various markers are expressed that correlate with the differentiation
steps along the pathway from early progenitor cells to newly generated postmitotic neurons within the DG. Markers that are
currently widely used for the investigation of adult hippocampal neurogenesis are: glial fibrillary acidic protein, nestin,
Pax6, NeuroD, PSA-NCAM, doublecortin, TUC-4, Tuj-1, and calretinin. The discovery and development of specific markers that
allow the time-course and fate of neurons to be followed during adult neurogenesis in a detailed and precise fashion are not
only helpful for gaining further insights into the genesis of new neurons in the hippocampus, but also might be applicable
to the development of strategies for therapeutic interventions.
This study was supported by the DFG (SFB 636/A5). 相似文献
7.
Neurogenesis in the adult central nervous system 总被引:8,自引:0,他引:8
Taupin P 《Comptes rendus biologies》2006,329(7):465-475
Contrary to the long-held dogma, neurogenesis occurs throughout adulthood, and neural stem cells reside in the adult central nervous system (CNS) in mammals. The developmental process of the brain may thus never end, and the brain may be amenable to repair. Neurogenesis is modulated in a wide variety of physiological and pathological conditions, and is involved in processes such as learning and memory and depression. However, the relative contribution of newly generated neuronal cells to these processes, as well as to CNS plasticity, remains to be determined. Thus, not only neurogenesis contributes to reshaping the adult brain, it will ultimately lead us to redefine our knowledge and understanding of the nervous system. 相似文献
8.
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. 相似文献
9.
Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon 总被引:1,自引:0,他引:1
Adolf B Chapouton P Lam CS Topp S Tannhäuser B Strähle U Götz M Bally-Cuif L 《Developmental biology》2006,295(1):278-293
10.
Lifelong neurogenesis in vertebrates relies on stem cells producing proliferation zones that contain neuronal precursors with distinct fates. Proliferation zones in the adult zebrafish brain are located in distinct regions along its entire anterior-posterior axis. We show a previously unappreciated degree of conservation of brain proliferation patterns among teleosts, suggestive of a teleost ground plan. Pulse chase labeling of proliferating populations reveals a centrifugal movement of cells away from their places of birth into the surrounding mantle zone. We observe tangential migration of cells born in the ventral telencephalon, but only a minor rostral migratory stream to the olfactory bulb. In contrast, the lateral telencephalic area, a domain considered homologous to the mammalian dentate gyrus, shows production of interneurons and migration as in mammals. After a 46-day chase, newborn highly mobile cells have moved into nuclear areas surrounding the proliferation zones. They often show HuC/D immunoreactivity but importantly also more specific neuronal identities as indicated by immunoreactivity for tyrosine hydroxylase, serotonin and parvalbumin. Application of a second proliferation marker allows us to recognize label-retaining, actively cycling cells that remain in the proliferation zones. The latter population meets two key criteria of neural stem cells: label retention and self renewal. 相似文献
11.
G. K. H. Zupanc 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(6):649-670
Fish are distinctive in their enormous potential to continuously produce new neurons in the adult brain, whereas in mammals adult neurogenesis is restricted to the olfactory bulb and the hippocampus. In fish new neurons are not only generated in structures homologous to those two regions, but also in dozens of other brain areas. In some regions of the fish brain, such as the optic tectum, the new cells remain near the proliferation zones in the course of their further development. In others, as in most subdivisions of the cerebellum, they migrate, often guided by radial glial fibers, to specific target areas. Approximately 50% of the young cells undergo apoptotic cell death, whereas the others survive for the rest of the fish’s life. A large number of the surviving cells differentiate into neurons. Two key factors enabling highly efficient brain repair in fish after injuries involve the elimination of damaged cells by apoptosis (instead of necrosis, the dominant type of cell death in mammals) and the replacement of cells lost to injury by newly generated ones. Proteome analysis has suggested well over 100 proteins, including two dozen identified ones, to be involved in the individual steps of this phenomenon of neuronal regeneration. 相似文献
12.
Neurogenesis in the Adult Mammalian Brain 总被引:1,自引:0,他引:1
Sosunov A. A. Chelyshev Yu. A. McKhann G. Kruglyakov P. P. Balykova O. P. Shikhanov N. P. 《Russian Journal of Developmental Biology》2002,33(6):327-341
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy. 相似文献
13.
Binge ethanol exposure decreases neurogenesis in adult rat hippocampus 总被引:10,自引:0,他引:10
Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indicated that neural progenitor cells proliferate throughout life forming neurons, astrocytes, and oligodendrocytes. The dentate gyrus is one neurogenic region of the adult brain containing neural progenitor cells. To determine if binge ethanol (EtOH) exposure alters neural progenitor cell proliferation and survival, bromodeoxyuridine was administered to adult male rats following an acute or chronic binge exposure paradigm. For an acute binge, rats were gavaged with a 5 g/kg dose of EtOH or vehicle, administered bromodeoxyuridine, and killed either 5 h or 28 days after EtOH treatment. In a 4-day, chronic-binge paradigm, rats were infused with EtOH three times per day (mean dose 9.3 g/kg/day) or isocaloric control diet. Rats were given bromodeoxyuridine once a day for the 4 days of chronic binge treatment, then perfused either immediately following the last dose of EtOH or 28 days later. In both EtOH treatment groups, binge EtOH decreased neural progenitor cell proliferation. Following the chronic four-day binge, neural progenitor cell survival was decreased. These studies are the first to show EtOH inhibition of neural progenitor cell proliferation and survival in the adult, a possible new mechanism underlying alcoholic cognitive dysfunction. 相似文献
14.
目的观察ABRA(Actin binding Rho activator)在成年大鼠大脑皮质和海马中的表达。方法制备成年大鼠脑的冰冻切片,采用共聚焦免疫荧光技术和免疫荧光强度测量检测ABRA在大鼠大脑皮质和海马区的表达。结果 ABRA在神经元的胞核、胞浆、突起内可见,其中胞核着色最强。在大脑皮质,ABRA阳性的神经元胞体和突起广泛分布于皮质的分子层、外颗粒层、外锥体细胞层、内颗粒层、内锥体细胞层、多形细胞层,其免疫荧光强度分别为129.22±16.94、125.39±29.83、117.67±22.50、105.85±17.65、103.90±18.00、100.23±20.38,ABRA阳性细胞率分别为0.51±0.01、0.69±0.02、0.64±0.03、0.58±0.05、0.65±0.09、0.63±0.01。在海马,ABRA均匀分布于海马各部,阳性神经元集中于锥体细胞层,而其阳性突起弥散分布于海马分子层和多形层。海马锥体细胞层、分子层、多形层免疫荧光强度分别为141.19±35.48、53.19±10.38、43.32±9.59,ABRA阳性细胞率分别为0.62±0.04、0.27±0.07、0.25±0.03。结论 ABRA广泛表达于大鼠大脑皮质和海马各层,提示ABRA可能在大鼠这些部位的神经细胞功能活动方面起重要作用。 相似文献
15.
Schizophrenia (SCZ) is a devastating and complicated mental disorder accom panied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment. 相似文献
16.
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells. 相似文献
17.
目的皮下注射bFGF于血管性痴呆大鼠,研究用药前后对大鼠海马神经干细胞增殖能力的影响。方法制作VD大鼠模型,随机取用VD大鼠模型12只,分治疗组6只,痴呆组6只。另外,取假手术组6只。皮下注射bFGF于治疗组中血管性痴呆大鼠。治疗5周后,以Morris水迷宫定位航行试验和空间探索试验来检测大鼠的学习记忆能力,巢蛋白(nestin)免疫组织化学染色,观察海马nestin阳性细胞数的变化。结果治疗组大鼠海马nestin阳性细胞数较痴呆组明显增多。结论皮下注射bFGF后能迁移至海马,诱导海马产生nestin阳性细胞,刺激大鼠海马神经干细胞增殖,修复受损组织。 相似文献
18.
A-L Hillje M A S Pavlou E Beckmann M M A Worlitzer L Bahnassawy L Lewejohann T Palm J C Schwamborn 《Cell death & disease》2013,4(12):e976
In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process. 相似文献
19.
成年海马中神经发生及影响因素 总被引:1,自引:0,他引:1
动物成年后在其中枢神经系统内仍有神经发生。成年神经发生的主要区域是海马齿状回的颗粒下层和脑室下区的侧脑室外侧壁。目前认为成年后的海马神经发生参与记忆的形成,尤其对癫痫和神经退行性疾病的缓解和治疗具有重要意义。成年海马的神经发生受多种生理、病理因素的调控。我们就近年来成年海马神经发生的影响因素及其可能机制进行综述。 相似文献
20.
Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus 总被引:5,自引:0,他引:5
Steroid hormones are regulators of adult hippocampal neurogenesis and are central to hypotheses regarding adult neurogenesis in age-related and psychiatric disturbances associated with altered hippocampal plasticity--most notably dementias and major depression. Using immunohistochemistry, we examined the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors during adult hippocampal neurogenesis. In young mice only 27% of dividing cells in the subgranular zone expressed GR, whereas 4 weeks after division 87% had become positive for GR and MR. GR was expressed by 50% of the radial glia-like type-1 and type-2a progenitor cells, whereas MR was expressed only by mature calbindin-positive granule cells. Doublecortin-positive neuronal progenitor cells (type-2b) and early postmitotic calretinin-positive neurons were devoid of GR and MR expression. Fifty per cent of the intermediate type-3 cells showed GR expression, possibly reflecting cells terminating maturation. Thus, all subpopulations of dividing precursor cells showed an identical receptor profile (50% GR, no MR), except for type-2b cells, which expressed neither receptor. There was also no overlap between calretinin and GR early postnatally (P8) or after physical activity or exposure to an enriched environment, both of which are potent neurogenic stimuli. In contrast, in old age calretinin-positive young neurons became GR and MR positive, suggesting increased steroid sensitivity. Age also increased the expression of GR in type-1 and type-2a precursor cells. Other intermediates were so rare in old age that they could not be studied. This course and variability of receptor expression in aging might help to explain differential vulnerability of adult neural precursor cells to corticoid-mediated influences. 相似文献