共查询到20条相似文献,搜索用时 0 毫秒
1.
The stoloniferous herb Trifolium repens was used to study the expression of induced systemic resistance (ISR) to the generalist caterpillar Spodoptera exigua in interconnected ramets of clonal fragments. The ISR was assessed as caterpillar preference in dual choice tests between control and systemically induced plants. The ISR was detected in young ramets, after inducing older sibling ramets on the same stolon by a controlled herbivore attack. However, older ramets did not receive a defense induction signal from younger ramets unless the predominant phloem flow was reversed by means of basal shading. This provides evidence for the notion that in T. repens the clone-internal expression of ISR is coupled to phloem transport and follows source–sink gradients. The inducibility of the genotypes was not linked to their constitutive ability to produce cyanide, implying the absence of a trade-off between these two defense traits. To our knowledge, this is the first study that explores ISR to herbivory in the context of physiological integration in potentially extensive clonal plant networks. 相似文献
2.
Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases 总被引:1,自引:0,他引:1
Studies of induced systemic resistance using strains of plant growth-promoting rhizobacteria (PGPR) have concentrated on the use of individual PGPR as inducers against multiple diseases of a single crop. To date, few reports have examined the potential of PGPR strain mixtures to induce systemic resistance against diseases of several different plant hosts. The objective of this study was to select mixtures of compatible PGPR strains with the capacity to elicit induced systemic resistance in four hosts. The specific diseases and hosts tested in this study included: bacterial wilt of tomato (Lycopersicon esculentum) caused by Ralstonia solanacearum, anthracnose of long cayenne pepper (Capsicum annuum var. acuminatum) caused by Colletotrichum gloeosporioides, damping off of green kuang futsoi (Brassica chinensis var. parachinensis) caused by Rhizoctonia solani, and cucumber mosaic virus (CMV) on cucumber (Cucumis sativus). To examine compatibility, seven selected PGPR strains were individually tested for in vitro antibiosis against all other PGPR strains and against three of the tested pathogens (R. solanacearum, C. gloeosporioides, and R. solani). No in vitro antibiosis was observed among PGPR strains or against pathogens. Twenty-one combinations of PGPR and seven individual PGPR were tested in the greenhouse for induced resistance activity. Results indicated that four mixtures of PGPR and one individual strain treatment significantly reduced the severity of all four diseases compared to the nonbacterized control: 11 mixtures reduced CMV of cucumber, 16 mixtures reduced bacterial wilt of tomato, 18 mixtures reduced anthracnose of long cayenne pepper, and 7 mixtures reduced damping off of green kuang futsoi. Most mixtures of PGPR provided a greater disease suppression than individual PGPR strains. These results suggest that mixtures of PGPR can elicit induced systemic resistance to fungal, bacterial, and viral diseases in the four hosts tested. 相似文献
3.
4.
Summary A large (>250 kb) conjugative plasmid, pMER610, specifying resistance to tellurium and mercury was isolated from an Alcaligenes strain and transferred by conjugation to Escherichia coli AB1157. The acquisition of pMER610 by AB1157 increased the resistance to both tellurite and tellurate by 100-fold. Expression of tellurite resistance by pMER610 and the cloned Ter determinant was inducible by prior exposure to tellurite at levels sub-toxic to the sesitive AB1157. Physical analysis of the cloned Ter fragment located the resistance determinant to a 3.55 kb region. Insertion of Tn 1000 () into this region produced two classes of sensitive mutations, fully sensitive and intermediate or hyposensitive, which map in adjacent regions and form two complementation groups. Maxicell analysis identified four polypeptides (15.5, 22, 23 and 41 kDa) expressed by the Ter clone. The 23 kDa polypeptide may not be required for resistance since tellurium-sensitive insertion mutations were not detected in the 23 kDa coding region. 相似文献
5.
Botrytis allii andCollectotrichum dematium are onion pathogens which can infect in the field and cause decay in storage. Some phenolics can hinder development of these fungi, but the effect of cytokinins is not clear. Cytokinins (kinetin or 6-benzyladenine) or phenolics (caffeic or chlorogenic acids) were added to agar at concentrations of 0 to 10–3 M. Cultures were continuously irradiated with fluorescent light or maintained in the dark for 6 days. On unamended media, final mycelial elongation was 45 or 17.8 mm and sporulation was 28 or 10.6 × 104 spores/ml forBotrytis andColletotrichum, respectively. ForBotrytis, mycelial elongation was slightly (5%) but significantly increased and sporulation increased by 21% by incubation on phenolics as compared to cytokinins. Mycelial extension ofColletotrichum was not affected by amendment. Sporulation ofColletotrichum on kinetin was 16 to 28% greater than on the other amendments. As amendments concentration increased elongation of mycelia of both fungi decreased. Sporulation ofBotrytis increased by 60% as amendment concentration increased from 0 to 10–5 M and then decreased 25% at 10–3 M. As amendment concentration increased from 0 to 10–3 M, sporulation ofColletotrichum increased by 45%. Incubation in light increased mycelial extension 3 to 17% forBotrytis andColletotrichum respectively, and sporulation was increased approximately 78% for both fungi. These compounds do not appear to inhibit development of theseBotrytis orColletotrichum species in culture. 相似文献
6.
Plant defense theory suggests that inducible resistance has evolved to reduce the costs of constitutive defense expression.
To assess the functional and potentially adaptive value of induced resistance it is necessary to quantify the costs and benefits
associated with this plastic response. The ecological and evolutionary viability of induced defenses ultimately depends on
the long-term balance between advantageous and disadvantageous consequences of defense induction. Stoloniferous plants can
use their inter-ramet connections to share resources and signals and to systemically activate defense expression after local
herbivory. This network-specific early-warning system may confer clonal plants with potentially high benefits. However, systemic
defense induction can also be costly if local herbivory is not followed by a subsequent attack on connected ramets. We found
significant costs and benefits of systemic induced resistance by comparing growth and performance of induced and control plants
of the stoloniferous herb Trifolium repens in the presence and absence of herbivores. 相似文献
7.
D. C. Linde W. C. Bridges B. B. Rhodes 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1990,79(1):13-16
Summary The resistant breeding line, AR79-95, and the susceptible cultivar, Model, were crossed to develop F1, F2, F3, and backcross populations for genetic analysis of resistance in cucumbers to race 2 of Colletotrichum lagenarium (Pass.) Ellis & Halsted., the causal agent of cucurbit anthracnose. There was no maternal effect on resistance and a small amount of F1 heterosis toward the susceptible parent. Generation means analysis showed that there was additive and dominance but no epistatic gene action detected on the scale used. Additive and dominance genetic variances were estimated, and narrow-sense heritability was low to moderate. Based on effective factor formulae, at least five effective factors contrtolled the resistance. Some of these factors were dominant and others recessive. Implications for breeding procedures are discussed. 相似文献
8.
9.
M. M. Kyle R. Provvidenti 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1993,86(2-3):189-196
Summary A single dominant factor, Hss, that conditions a rapid lethal necrotic response to soybean mosaic virus (SMV) has been identified in Phaseolus vulgaris L. cv. Black Turtle Soup, line BT-1. Inoculated plants carrying this factor developed pinpoint necrotic lesions on inoculated tissue followed by systemic vascular necrosis and plant death within about 7 days, regardless of ambient temperature. BT-1 also carries dominant resistance to potyviruses attributed to the tightly linked or identical factors, I, Bcm, Cam, and Hsw, so linkage with Hss was evaluated. No recombinants were identified among 381 F3 families segregating for potyvirus susceptibility, thus if Hss is a distinct factor, it is tightly linked to I, Bcm, Cam, and Hsw. BT-1 was also crossed reciprocally with the line Great Northern 1140 (GN 1140) in which the dominant gene, Smv, for systemic resistance to SMV was first identified. Smv and Hss segregated independently and are co-dominant. The (GN 1140 x BT-1) F1 populations showed a seasonal shift of the codominant phenotype. Evaluation of the (GN 1140 x BT-1) F2 population under conditions where Smv is partially dominant allowed additional phenotypic classes to be distinguished. Pathotype specificity has not been demonstrated for either Smv or Hss. Genotypes that are homozygous for both dominant alleles are systemically resistant to the virus and in addition show undetectable local viral replication or and no seed transmission. This work demonstrates that a gene which conditions a systemic lethal response to a pathogen may be combined with additional gene(s) to create an improved resistant phenotype. 相似文献
10.
The infection of tomato leaves by Phytophthora infestans was followed using cytological methods. Fungal ingress and plant reactions in untreated and induced resistant plants were studied. Systemic disease resistance was induced by a local pre-infection with the same fungus. Induction retarded fungal progress at the leaf surface, epidermis and in the mesophyll. The reduced numbers of germinated cysts indicate the presence of fungitoxic substances on the leaf surface of induced plants. Frequency of fungal penetration through the outer epidermal cell wall was reduced, but only in plants exhibiting a high level of induced resistance. Autofluor-escent material, indicating the presence of lignin-like substances, accumulated rapidly beneath some of the appressoria, but this plant response was similar in induced and non-induced plants. Staining with aniline blue indicated that callose deposition was not involved in induced resistance. Thus, none of the cytologically investigated plant reactions correlated with the reduced penetration frequency observed. In the mesophyll, however, the cytological picture corresponding to a hypersensitive reaction occurred more often in induced plants. It is concluded that reduction of disease severity by induction is the result of the combined action of several successive defence reactions.Dedicated to the memory of Professor H. Grisebach 相似文献
11.
In a previous report, it was described that strawberry plants pre-treated with an avirulent isolate of Colletotrichum fragariae (M23) acquired resistance to a virulent isolate of Colletotrichum acutatum (M11) causing anthracnose. In this report we present evidence that the eliciting activity can be found not only in conidial extracts but in culture supernatants of the avirulent pathogen as well. Plants of the cv. Pájaro treated with the culture filtrate (CF) derived from M23, 3 days prior to the inoculation with M11 showed significantly reduced disease severity as compared to control plants and the disease was completely suppressed when plants were pre-treated 7 days before the challenge inoculation with M11. The same effect was achieved when a single leaf was sprayed with CF, suggesting that the resistance acquired is systemic. Control treatments showed that none of the active extracts inhibited the growth of the virulent pathogen, indicating that the protection effect was due to the induction of a defense response. The latter was confirmed by the accumulation of reactive oxygen species (e.g. hydrogen peroxide, superoxide anion) and the deposition of lignin and callose, usually associated to plant defense, after the CF treatment. Experiments carried out with other strawberry cultivars treated with CF showed that also protected them against different virulent isolates, suggesting that the response observed is cultivar-nonspecific. These outcomes indicate that the protection against anthracnose in strawberry involves a phenomenon of induced resistance (IR) by action of defense-eliciting molecules produced by M23. 相似文献
12.
T. Wai R. Grumet 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(4):699-706
The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20–30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3. 相似文献
13.
Thirty-six phytohormone-affected mutants of Arabidopsis thaliana (L.) Heynh. and their parental ecotypes were tested for resistance/susceptibility to Botrytis cinerea Pers.; Fr. and ability to develop Trichoderma-mediated induced systemic resistance (ISR). Ecotype Colombia-0 (Col-0) was relatively resistant to B. cinerea, and Trichoderma harzianum Rifai T39 application at sites spatially separated (roots) from the B. cinerea inoculation (leaves) resulted in reduction of grey mold symptoms. Ecotypes Wassilewskija-4, Nossen-0 and Landsberg-0 had
low levels of basal resistance to B. cinerea and were unable to express ISR. Mutants derived from ISR-non-inducible ecotypes displayed ISR-non-inducible phenotypes, whereas
the ISR inducibility of mutants derived from the ISR-inducible genotype Col-0 varied according to the type of mutant. Thus,
salicylic acid (SA)-impaired mutants derived from Col-0 were ISR-inducible, while ethylene/jasmonic acid (ethylene/JA)-impaired
mutants of the same origin were ISR-non-inducible. SA-impaired mutants retained basal level of resistance to B. cinerea, while most ethylene/JA-impaired mutants were highly susceptible. Abscisic acid- and gibberellin-impaired mutants were highly
susceptible to B. cinerea and showed ISR-non-inducible phenotypes irrespective of their lines of origin. Auxin-resistant mutants derived from Col-0
were ISR-inducible; mutant originating from Landsberg-0 and mutants which were resistant to both auxin and ethylene were ISR-non-inducible.
Most of the arabidopsis genotypes which were unable to express Trichoderma-mediated ISR against B. cinerea exhibited enhanced susceptibility to this pathogen. T. harzianum treatments enhanced the growth of arabidopsis plants regardless of genotype or ISR inducibility. 相似文献
14.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao. 相似文献
15.
The genetic basis of resistance to pathogens is well studied in crops, yet our understanding of the evolution of this trait in natural populations will be improved by determining how resistance is inherited in a wide range of plant-pathogen interactions. Here, we examined resistance to Coleosporium ipomoeae, a common fungal rust pathogen of Ipomoea purpurea. Natural populations across North Carolina, South Carolina, and Georgia (USA) were surveyed for the presence of C. ipomoeae and seeds were collected. A combination of crosses and controlled infections was then used to determine the genetic basis of qualitative resistance. In one population studied in detail, complete resistance to natural infection and a bulk collection of C. ipomoeae is conferred by a single locus (Rci1), where resistance is dominant to susceptibility. Allelic, major-gene resistance to this same bulk collection of C. ipomoeae appears to also occur in nine other natural populations. The prevalence of this resistance phenotype in natural populations suggests that the evolution of resistance to C. ipomoeae in I. purpurea may be dominated by genes of large phenotypic effect. 相似文献
16.
Tapia-Tussell R Quijano-Ramayo A Cortes-Velazquez A Lappe P Larque-Saavedra A Perez-Brito D 《Molecular biotechnology》2008,40(3):293-298
Colletotrichum gloeosporioides is the common causal agent of anthracnose in papaya (Carica papaya L.) fruits, and infection by this fungal pathogen results in severe post-harvest losses. In the Yucatán peninsula (Mexico)
a different Colletotrichum species was isolated from papaya fruits with atypical anthracnose lesions. The DNAs from a variety of Colletotrichum isolates producing typical and atypical lesions, respectively, were amplified by PCR with C.gloeosporioides-specific primers. All isolates from typical anthracnose lesions yielded a 450 bp PCR product, but DNAs from isolates with
atypical lesions failed to produce an amplification product. For further characterization, the rDNA 5.8S-ITS region was amplified
by PCR and processed for sequencing and RFLP analysis, respectively, to verify the identity of the papaya anthracnose pathogens.
The results revealed unequivocally the existence of two Colletotrichum species causing anthracnose lesions on papaya fruits: C. gloeosporioides and C. capsici. PCR-RFLP using the restriction endonuclease MspI reliably reproduced restriction patterns specific for C. capsici or C. gloeosporioides. The generation of RFLP patterns by MspI (or AluI or RsaI) is a rapid, accurate, and unequivocal method for the detection and differentiation of these two Colletotrichum species. 相似文献
17.
18.
Lia Cecília de Lima Fvaro Welington Luiz Araújo Ednia Aparecida de Souza-Paccola Joo Lúcio Azevedo Luzia Doretto Paccola-Meirelles 《Mycological Research》2007,111(1):93-105
The fungus Colletotrichum sublineolum, causal agent of sorghum anthracnose, presents high variability, genetic instability and host specialization. The aims of the present work were to investigate the mechanisms involved in the genetic instability in this species. Mutants resistant to chlorate and unable to use nitrate (Nit mutants), were obtained spontaneously, isolated and characterized for complementation pattern, reversion frequency and RAPD profile. The results showed that chlorate-resistant mutants could be divided into six phenotypic classes that probably represented mutations in the structural nitrate reductase locus (nit1), in the structural nitrite reductase locus (nit6 and niiA of Neurospora and Aspergillus, respectively), in the specific regulator locus (nit3), in the main regulator locus (nit2), in loci that codified the cofactor containing molybdenum necessary for nitrate reductase activity (NitM), and one or more genes responsible for nitrate intake (crn). In addition, the genetic control of this metabolism in C. sublineolum seems to be similar to other fungi species such as Aspergillus, Neurospora and Fusarium. The high reversion frequency (10−4 to 10−5) presented by nit1 mutants suggests that the instability in evaluated strains could be a result of transposable elements activity. The RAPD analysis enabled confirmation that the Nit mutants have a similar genetic background to original strain, and that polymorphism exists among wild-type strains, nit1 mutants and revertants of C. sublineolum. These are important aspects for the later direction of molecular analysis, where these mutants will be used as a tool to isolate the active transposable elements in the C. sublineolum genome. 相似文献
19.
The infection of cucumber leaves by Colletotrichum lagenarium was studied using cytological methods. Its progress in untreated plants was compared with that in plants in which systemic resistance had been induced by pre-infecting the first true leaf with the same fungus. In induced plants, a reduction of fungal development was observed at the leaf surface, in the epidermis, and in the mesophyll. On the leaf surface, formation of appressoria was slightly reduced. In the epidermis, enhanced formation of papillae beneath appressoria, and possibly increased lignification of entire cells, correlated with reduced development of infection hyphae. Papillae contained callose, identified by staining with aniline-blue fluorochrome and digestion with -1,3-glucanase, as a main structural component. In the mesophyll, reduced fungal development provided evidence for the existence of an additional induced defence reaction. The results imply that preinfection elicited a systemic, multicomponent defence reaction of the host plant against the fungus.Dedicated to the memory of Professor H. Grisebach 相似文献
20.
Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens 总被引:5,自引:0,他引:5
Two pathogenesis-related (PR) protein genes consisting of a barley chitinase (chi-2) and a wheat lipid-transfer-protein (ltp) were introduced singly and in combination into carrot plants via Agrobacterium-mediated transformation using the phosphinothricin acetyl transferase (bar) gene as a selectable marker. Over 75% of regenerated plants were confirmed to be positive for the transgenes by PCR and
RT-PCR and were resistant to the herbicide Liberty (0.2%, v/v). Northern analysis and immunoblotting confirmed the expression
of the transgenes in about 70% of the plants, with variable expression levels among individual lines. Southern analysis revealed
from one to three copies of each transgene. Transgenic plants were inoculated with two necrotrophic foliar fungal pathogens,
Alternaria radicicola and Botrytis cinerea, and showed significantly higher resistance when both PR genes were expressed compared to single-gene transformants. The
level of disease reduction in plants expressing both genes was 95% for Botrytis and 90% for Alternaria infection compared to 40–50% for single-gene transformants. The chi2 and ltp genes could be deployed in combination in other crop plants to significantly enhance resistance to necrotrophic fungal pathogens. 相似文献