首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

2.
Transport of D-lactate in perfused rat liver   总被引:2,自引:0,他引:2  
The transport of D-lactate across the plasma membrane was investigated in hemoglobin-free perfused rat livers, applying the multiple-indicator dilution technique (pulse labelling of D-lactate and indicator substances). The following results were obtained: 1. The steady state exchange rate at 1 mM D-lactate was 2.5 mumol x min-1 x g wet wt-1. It was proportional to the extracellular concentration in the range between 0.1 and 70 mM. 2. The transport of D-lactate was inhibited by L-lactate and pyruvate; 50% inhibition was observed at 40 mM L-lactate or 5 mM pyruvate. 3. The transport was also inhibited by alpha-cyanocinnamate and 4,4'-diisocyanostilbene-2,2'-disulfonic acid. The inhibition by cyanocinnamate was complete (with 25 mM) and fully reversible, whereas the inhibition by diisothiocyanostilbenedisulfonic acid was incomplete and irreversible; it was dependent upon the amount of diisothiocyanostilbenedisulfonic acid bound by the liver. Maximal inhibition (80%) was observed with 2 mumol diisothiocyanostilbenedisulfonic acid bound per g wet weight. 4. The intracellular concentration (ci) of D-lactate was proportional to the extracellular concentration (ce); the ratio ci/ce was 0.5 throughout the concentration range studied. It decreased in the presence of L-lactate or pyruvate. It is concluded that the transport of D-lactate is carrier-mediated, and, at least partially, electroneutral.  相似文献   

3.
1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.  相似文献   

4.
The concentrations of D- and L-lactate, methylglyoxal and pyruvate were measured in tissues of normal and starved Octopus ocellatus. D-Lactate was always more abundant than L-lactate in the tissues. D-Lactate, pyruvate and methylglyoxal were present in 320, 94 and 43 times higher concentrations in tentacle of O. ocellatus of control group than those in normal rat skeletal muscle. The D-lactate concentration in the tentacle of O. ocellatus was 17-fold higher than that in Octopus vulgars. The activities of enzymes involved with D-lactate metabolism such as pyruvate kinase, octopine dehydrogenase, glyoxalase I and II and lactate dehydrogenase were measured in those tissues. The activities of glyoxalase I and II, and D-lactate dehydrogenase were increased in mantle and tentacle of starved octopus, while the levels of D-lactate and related metabolites were lowered in these tissues. The experimental results presented in this report and up to the present indicate that D-lactate is actively used for energy production in the tentacle and mantle of the starved animals. In octopus, especially starved octopus D-lactate was actively produced from methylglyoxal, which is formed via aminoacetone from threonine and glycine.  相似文献   

5.
The purpose of this investigation was to determine whether endurance exercise training increases the ability of human skeletal muscle to accumulate glycogen after exercise. Subjects (4 women and 2 men, 31 +/- 8 yr old) performed high-intensity stationary cycling 3 days/wk and continuous running 3 days/wk for 10 wk. Muscle glycogen concentration was measured after a glycogen-depleting exercise bout before and after endurance training. Muscle glycogen accumulation rate from 15 min to 6 h after exercise was twofold higher (P < 0.05) in the trained than in the untrained state: 10.5 +/- 0.2 and 4.5 +/- 1.3 mmol. kg wet wt(-1). h(-1), respectively. Muscle glycogen concentration was higher (P < 0.05) in the trained than in the untrained state at 15 min, 6 h, and 48 h after exercise. Muscle GLUT-4 content after exercise was twofold higher (P < 0.05) in the trained than in the untrained state (10.7 +/- 1.2 and 4.7 +/- 0.7 optical density units, respectively) and was correlated with muscle glycogen concentration 6 h after exercise (r = 0.64, P < 0.05). Total glycogen synthase activity and the percentage of glycogen synthase I were not significantly different before and after training at 15 min, 6 h, and 48 h after exercise. We conclude that endurance exercise training enhances the capacity of human skeletal muscle to accumulate glycogen after glycogen-depleting exercise.  相似文献   

6.
Rates of gluconeogenesis from lactate or pyruvate in hepatocytes from untrained rats were not increased by an acute (1 h) bout of exercise (running at 20 m/min). Hepatocytes from rats that had been exercise-trained for 1 month had lower rates of gluconeogenesis from lactate than cells from unexercised controls; the rates with pyruvate were identical. Hepatocytes from livers of trained animals immediately after 1 h of exercise synthesized glucose more rapidly and accumulated more citrulline than cells from resting rats.  相似文献   

7.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

8.
To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.  相似文献   

9.
The purpose of the study was to define a relationship between plasma ammonia [NH3]pl and blood lactate concentrations [la-]b after exercise in children and to find out whether the [NH3]pl, determined during laboratory treadmill tests, may be useful as a predictor of the children's sprint running ability. A group of 20 girls and 14 boys trained in athletics or swimming and 8 untrained boys, aged 13.2 to 13.7 years, participated in the study. Their [NH3]pl and [la-]b were measured before and after incremental maximal treadmill exercise. In addition, the subjects' running performance was tested in 30-, 60- and 600- or 1000-m runs under field conditions. The [NH3]pl during the treadmill runs increased by 20.1 (SD 17.3), 24 (SD 16.7) and 10 (SD 4.3) mumol.l-1 in the girls, the trained boys and the untrained boys, respectively. The postexercise [NH3]pl correlated positively with [la-]b (r = 0.565 in the girls and 0.812 in the boys) and treadmill speed attained during the test (r = 0.489 in the girls and 0.490 in the boys). Significant correlations were also found between [NH3]pl obtained during the treadmill test and the times of 30- and 60-m runs (r = -0.676 and -0.648, respectively) in the boys but not in the girls. A comparison of the present data with those reported previously in adults showed that increases in [NH3]pl during maximal exercise in children would seem to be lower than in adult subjects both in absolute values and in relation to [la-]b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   

11.
We investigated the total conversion of racemic lactate, L-lactate, and pyruvate into D-lactate, which is very useful as a starting material for the synthesis of chiral compounds and much more valuable than the L-enantiomer by means of coupling of L-specific oxidation of the racemate with L-lactate oxidase and non-enantiospecific reduction of pyruvate to DL-lactate with sodium borohydride. In this one-pot system, L-lactate was enantiospecifically oxidized to an achiral product, pyruvate, which was chemically reduced to DL-lactate leading to a turnover. Consequently, either DL-lactate, L-lactate, or pyruvate was fully converted to the D-enantiomer. We optimized the reaction conditions: DL-lactate was converted to D-lactate in 99% of the theoretical yield and with more than 99% enantiomeric excess. DL-alpha-Hydroxybutyrate and alpha-ketobutyrate were converted also to D-alpha-hydroxybutyrate in the same way, though slowly.  相似文献   

12.
Bead discrimination learning in day-old chicken was inhibited by bilateral injection into the intermediate medial mesopallium (IMM), a homolog of the mammalian brain cortex, of the poorly metabolized enantiomer of L-lactate, D-lactate. The window of vulnerability extended from 10 min before training to 20 min after training. Unilateral injection 10 min before training inhibited only in the left IMM, whereas 10 min after training injection was only inhibitory if made into the right hemisphere. The pre-training administration caused memory loss from the earliest time tested whereas memory was maintained for another 20 min when D-lactate was injected 10 min post-training. The ability of acetate, an astrocyte-specific substrate, injected into the IMM to counteract the inhibitory effect was tested. Following D-lactate injection 10 min before training, rescue of memory immediately after training was achieved by acetate as long as aspartate, an oxaloacetate precursor, was also present. This suggests that pyruvate carboxylation is necessary for net synthesis of glutamate, which is known to occur at this time [Gibbs, M.E., Lloyd, H.G.E., Santa, T., Hertz, L., 2007. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J. Neurosci. Res., 85, 3326-3333]. However, acetate alone rescued memory 20 min post-training (following d-lactate injection 10 min after training), indicating that pyruvate at this time is used for energy production, consistent with memory inhibition by dinitrophenol. These findings suggest that D-lactate acts by inhibiting uptake of L-lactate into astrocytes (an extracellular effect) or metabolism of pyruvate in astrocytic mitochondria (an intracellular effect). An apparent lag phase between the administration of d-lactate and its inhibition of learning favors the latter possibility. Thus, under the present experimental conditions D-lactate acts as an astrocytic metabolic inhibitor rather than as an inhibitor of neuronal L-lactate uptake, as has occasionally been suggested. Analogously, a rare reversible neurological syndrome with memory deficits, D-lactate encephalopathy, may mainly or exclusively be due to astrocytic malfunction.  相似文献   

13.
The metabolic response to two different forms of high-intensity intermittent cycle exercise was investigated in young women. Subjects (8 trained and 8 untrained) performed two bouts of high-intensity intermittent exercise: short sprint (SS) (8-s sprint, 12-s recovery) and long sprint (LS) (24-s sprint, 36-s recovery) for 20 min on two separate occasions. Both workload and oxygen uptake were greater in the trained subjects but were not significantly different for SS and LS. Plasma glycerol concentrations significantly increased during exercise. Lactate concentrations rose over the 20 min and were higher for the trained women. Catecholamine concentration was also higher postexercise compared with preexercise for both groups. Both SS and LS produced similar metabolic response although both lactate and catecholamines were higher after the 24-s sprint. In conclusion, these results show that high-intensity intermittent exercise resulted in significant elevations in catecholamines that appear to be related to increased venous glycerol concentrations. The trained compared with the untrained women tended to show an earlier increase in plasma glycerol concentrations during high-intensity exercise.  相似文献   

14.
1. The effect of exercise (2 hr treadmill running at 28 m/min) on PDHa (the activity of the active form of pyruvate dehydrogenase) in untrained rats, trained rats (2 hr/d at 25 m/min for 4 wk), and in 24 hr fasted rats was determined. 2. Exercise increased PDHa activity approximately 2 fold in fed-untrained rats. 3. Fasting decreased PDHa activity in sedentary rats to approximately half the activity in fed rats. 4. The increase in PDHa activity during exercise was less in fasted than fed rats. 5. Training did not change the total activity of PDH (phosphorylated plus nonphosphorylated forms) but the percent of PDH in the active form was increased in muscle of trained-rested rats. 6. PDHa activity was unchanged by acute exercise (2.5 hr at 40 m/min) in the trained rats.  相似文献   

15.
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.  相似文献   

16.
Sheep were subjected to moderate (5 km/h) and strenuous (7 km/h) exercise on a treadmill for 45 min. After training, the sheep were again exercised. Glucagon concentrations in plasma increased in all sheep after commencement of exercise. These increases were related directly to the severity of exercise. The glucagon response also was dependent upon training with a lesser increase in trained animals than in untrained animals running at the same speed. Insulin concentrations in plasma decreased significantly only during strenuous exercise in untrained sheep.  相似文献   

17.
Glycogen utilization during exercise appears to be related to muscle respiratory capacity. Since the decline in hindlimb muscle respiratory capacity that occurs in rats during old age is eliminated when young and old rats undergo an identical exercise training protocol, liver and gastrocnemius glycogen concentrations were determined in identically trained young and old Fischer 344 rats at rest and immediately after a 30-min run requiring approximately 75% of maximal O2 consumption. These values were also compared with untrained age-matched control animals. The animals, which were 10 or 24 mo old after 6 mo of training, were fasted for 24 h before they were killed. Resting gastrocnemius glycogen did not differ among the groups. After 30 min of running, gastrocnemius glycogen was lower in the untrained than the trained groups and was not different between the trained groups. Resting liver glycogen was lower in the old trained group than the untrained groups but not statistically different from the young trained group. The postrun liver glycogen did not differ among the groups. Estimated gastrocnemius and liver glycogen utilization during exercise was decreased in both trained groups compared with untrained age-matched controls. These results indicate that the training-induced glycogen sparing during exercise of the same relative intensity was not diminished with age in identically trained young and old rats.  相似文献   

18.
The acute effects of low-intensity exercise on plasma lipids were assessed in 22 healthy, normolipidaemic volunteers [mean age (SEM) 21.1 (0.2) years] of whom 11 were untrained and 11 endurance trained. Each subject walked for 2 h on a treadmill at a speed selected to elicit 30% [29.8 (3.9)%] of his or her maximal oxygen uptake. All subjects consumed a similar diet, i.e. 48% of energy from carbohydrate, for 2 days prior to the test. Pre-exercise, high-density lipoprotein (HDL) cholesterol concentration was higher in the trained group than in the untrained group [0.88 (0.06) mmol.l-1 vs 0.73 (0.09) mmol.l-1, P less than 0.05]. The walk elicited an increase in blood lactate concentration (P less than 0.01) but glucose homeostasis was well maintained by both groups. After 2 h of walking total cholesterol had increased by 13 (0.6)% (P less than 0.05). HDL cholesterol concentration increased by 17 (1.6)%, so that the ratio of total to HDL cholesterol was lower after the walk than pre-exercise (P less than 0.05). In the endurance-trained group HDL cholesterol concentration increased progressively, being 7.9 (2.4)% higher after 1 h and 19.7 (1.6)% higher after 2 h. A different response was evident in the untrained group where a rise after the 1st h [25.1 (2.3)%] was followed by a decrease towards pre-exercise values. These results show that one prolonged bout of low-intensity exercise modifies lipoprotein metabolism and hold out the interesting possibility that this response may differ in trained and untrained individuals.  相似文献   

19.
The rate of uptake and the distribution ratio between intra- and extracellular compartments of L- and D-lactate were studied in hepatocyte preparations from fed rats. L- and D-lactate uptake apparently depended on both passive diffusion and carrier-mediated components. The apparent Km of the high-affinity carrier for L-lactate was in the range of 1.8 mM. The reciprocal competitive inhibitions between isomers of lactate suggest that L- and D-lactate might be transported by distinct carriers. Lactate transport was inhibited by various anions; pyruvate was the most potent anion, whereas only high concentrations of ketone bodies were effective. Acidic extracellular pH enhanced lactate uptake, this effect being more pronounced for L-lactate. At low pH, L-lactate was concentrated into hepatocytes, but its affinity for the carrier appeared unchanged, suggesting the existence of a process gaining energy from the pH gradient across the cell membrane. In the hypothesis of a lactate/H+ symport, the affinity for H+ was not dependent on lactate concentration and the apparent Km for H+ corresponded to a pH of 7.34. No trans-stimulation of lactate uptake after prior loading of the cells with pyruvate or lactate was observed. The present data suggest that, at physiological concentrations, lactate uptake by the liver might be largely carrier-mediated and the rate of transport across the liver cell membrane may be of a magnitude relatively comparable to the rate of metabolism.  相似文献   

20.
This study compared the postprandial triacylglycerol (TAG) response to a high-fat meal in trained and untrained normolipidemic young adults after 2 days' abstinence from exercise. Fifty-three subjects (11 endurance-trained men, 9 endurance-trained women, 10 sprint/strength-trained men, 11 untrained men, 11 untrained women) consumed a meal (1.2 g fat, 1.1 g carbohydrate, 66 kJ per kg body mass) after a 12-h fast. Venous blood samples were obtained in the fasted state and at intervals until 6 h. Postprandial responses were the areas under the plasma or serum concentration-vs.-time curves. Neither fasting TAG concentrations nor the postprandial TAG response differed between trained and untrained subjects. The insulinemic response was 29% lower in endurance-trained men than in untrained men [mean difference -37.4 (95% confidence interval -62.9 to -22.9) microIU/ml x h, P = 0.01]. Responses of plasma glucose, serum insulin, and plasma nonesterified fatty acids were all lower for endurance-trained men than for untrained men. These findings suggest that, in young adults, no effect of training on postprandial lipemia can be detected after 60 h without exercise. The effect on postprandial insulinemia may persist for longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号