首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to define the role of As2O3 in regulating the tumor cell invasiveness, the effects of As2O3 on secretion of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), and in vitro invasion of HT1080 human fibrosarcoma cells were examined. As2O3 inhibited cell adhesion to the collagen matrix in a concentration dependent manner, whereas the same treatment enhanced cell to cell interaction. In addition, As2O3 inhibited migration and invasion of HT1080 cells stimulated with phorbol 12-myristate 13-aceate (PMA), and suppressed the expression of MMP-2, -9, membrane type-1 MMP, uPA, and uPA receptor (uPAR). In contrast, As2O3 increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and PA inhibitor (PAI)-1, and reduced the MMP-2, -9, and uPA promoter activity in the presence and absence of PMA. Furthermore, the promoter stimulating and DNA binding activity of nuclear factor-kappaB (NF-kappaB) was blocked by As2O3, whereas the activator protein-1 activity was unchanged. Pretreatment of the cells with N-acetyl-L-cysteine (NAC) significantly prevented suppression of MMPs and uPA secretion, DNA binding activity of NF-kappaB, and in vitro invasion of HT1080 cells by As2O3, suggesting a role of reactive oxygen species (ROS) in this process. These results suggest that As2O3 inhibits tumor cell invasion by modulating the MMPs/TIMPs and uPA/uPAR/PAI systems of extracellular matrix (ECM) degradation. In addition, the generation of ROS and subsequent suppression of NF-kappaB activity by As2O3 might partly be responsible for the phenomena. Overall, As2O3 shows potent activity controlling tumor cell invasiveness in vitro.  相似文献   

2.
Interaction between the urokinase-type plasminogen activator (uPA) and its receptor (uPAR) localizes cellular proteolysis and promotes cellular proliferation and migration. The interaction between uPA and uPAR at the surface of epithelial cells thereby contributes to the pathogenesis of lung inflammation and neoplasia. In this study, we sought to determine if uPA itself alters uPAR expression by lung epithelial cells. uPA enhanced uPAR expression as well as (125)I-uPA binding in Beas2B lung epithelial cells in a time- and concentration-dependent manner. The uPA-mediated induction of uPAR is not accomplished through its receptor and requires enzymatic activity. The low molecular weight fragment of uPA, lacking the receptor binding domain, was as potent as intact two-chain uPA in inducing expression of uPAR at the cell surface. Plasmin, the end product of plasminogen activation, did not alter uPA-mediated uPAR expression. Induction of uPAR by uPA represents a novel pathway by which epithelial cells can regulate uPAR-dependent cellular responses that may contribute to stromal remodeling in lung injury or neoplasia.  相似文献   

3.
4.
5.
Urokinase-type plasminogen activator (uPA) induces cell adhesion and chemotactic movement. uPA signaling requires its binding to uPA receptor (uPAR/CD87), but how glycosylphosphatidylinositol-anchored uPAR mediates signaling is unclear. uPAR is a ligand for several integrins (e.g. alpha 5 beta 1) and supports cell-cell interaction by binding to integrins on apposing cells (in trans). We studied whether binding of uPAR to alpha 5 beta 1 in cis is involved in adhesion and migration of Chinese hamster ovary cells in response to immobilized uPA. This process was temperature-sensitive and required mitogen-activated protein kinase activation. Anti-uPAR antibody or depletion of uPAR blocked, whereas overexpression of uPAR enhanced, cell adhesion to uPA. Adhesion to uPA was also blocked by deletion of the growth factor domain (GFD) of uPA and by anti-GFD antibody, whereas neither the isolated uPA kringle nor serine protease domain supported adhesion directly. Interestingly, anti-alpha 5 antibody, RGD peptide, and function-blocking mutations in alpha 5 beta 1 blocked adhesion to uPA. uPA-induced cell migration also required GFD, uPAR, and alpha 5 beta 1, but alpha 5 beta 1 alone did not support uPA-induced adhesion and migration. Thus, binding of uPA causes uPAR to act as a ligand for alpha 5 beta 1 to induce cell adhesion, intracellular signaling, and cell migration. We demonstrated that uPA induced RGD-dependent binding of uPAR to alpha 5 beta 1 in solution. These results suggest that uPA-induced adhesion and migration of Chinese hamster ovary cells occurs as a consequence of (a) uPA binding to uPAR through GFD, (b) the subsequent binding of a uPA.uPAR complex to alpha 5 beta 1 via uPAR, and (c) signal transduction through alpha 5 beta 1.  相似文献   

6.
The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1–100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.  相似文献   

7.
8.
Urokinase-type plasminogen activator receptor (uPAR) regulates pericellular proteolysis by binding the serine proteinase urokinase-type plasminogen activator (uPA) that promotes cell surface activating of plasminogen to plasmin. In addition, uPAR as a glycosylphosphatidylinositol (GPI)-anchored signaling receptor affects cell migration, differentiation, and proliferation. The aim of the present study was to monitor the occurrence and distribution pattern of uPAR in cells of the rat molar tooth germ. By means of immunocytochemistry moderate, uPAR immunoreactivity was detected in epithelial cells of the enamel organ and in ameloblasts and odontoblasts. RT-PCR and Western blotting experiments demonstrated the expression of uPAR in phorbol 12-myristate 13-acetate (PMA)-stimulated dental epithelial cells (HAT-7 cells). A substantial part of uPAR was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. However, co-immunoprecipitation experiments showed that uPAR and caveolin-1 do not associate with each other directly. Cell stimulation experiments with PMA indicated that protein kinase C (PKC)-mediated signaling pathways contribute to the expression of uPAR in cells of the enamel organ. The localization of uPAR in membrane rafts provides a basis for further investigations on the role of uPAR-mediated signaling cascades in ameloblasts.  相似文献   

9.
10.
11.
The role of the urokinase receptor (uPAR) in the internalization of the urokinase-plasminogen activator inhibitor type-1 (uPA.PAI-1) complex has been investigated. First, exploiting the species specificity of uPA binding, we show that mouse LB6 cells (that express a mouse uPAR) were unable to bind or degrade the human uPA.PAI-1 complex. On the other hand, LB6 clone 19 cells, which express a transfected human uPAR, degraded uPA.PAI-1 complexes with kinetics identical to the human monocytic U937 cells. We also show by immunofluorescence experiments with anti-uPA antibodies that in LB6 clone 19 cells, the uPA.PAI-1 complex is indeed internalized. While at 4 degrees C uPA fluorescence was visible at the cell surface, shift of the temperature to 37 degrees C caused a displacement of the immunoreactivity to the cytoplasmic compartment, with a pattern indicating lysosomal localization. If uPA.PAI-1 internalization/degradation is mediated by uPAR, inhibition of uPA.PAI-1 binding to uPAR should block degradation. Three different treatments, competition with the agonist amino-terminal fragment of uPA, treatment with a monoclonal antibody directed toward the binding domain of uPAR or release of uPAR from the cell surface with phosphatidylinositol-specific phospholipase C completely prevented uPA.PAI-1 degradation. The possibility that a serpin-enzyme complex receptor might be primarily or secondarily involved in the internalization process was excluded since a serpin-enzyme complex peptide failed to inhibit uPA.PAI-1 binding and degradation. Similarly, complexes of PAI-1 with low molecular mass uPA (33 kDa uPA), which lacks the uPAR binding domain, were neither bound nor degraded. Finally we also show that treatment of cells with uPA.PAI-1 complex caused a specific but partial down-regulation of uPAR. A similar result was obtained when PAI-1 was allowed to complex to uPA that had been previously bound to the receptor. The possibility therefore exists that the entire complex uPA.PAI-1-uPAR is internalized. All these data allow us to conclude that internalization of the uPA.PAI-1 complex is mediated by uPAR.  相似文献   

12.
Cancer invasion and metastasis is a process requiring a coordinated series of (anti-)adhesive, migratory, and pericellular proteolytic events involving various proteases such as urokinase-type plasminogen activator (uPA)/plasmin, cathepsins B and L, and matrix metalloproteases. Novel types of double-headed inhibitors directed to different tumor-associated proteolytic systems were generated by substitution of a loop in chicken cystatin, which is nonessential for cysteine protease inhibition, with uPA-derived peptides covering the human uPA receptor binding sequence uPA-(19-31). The inhibition constants of these hybrids toward cysteine proteases are similar to those of wild-type cystatin (K(i), papain (pm), 1.9-2.4; K(i), cathepsin B (nm), 1.0-1.7; K(i), cathepsin L (pm), 0.12-0.61). FACS analyses revealed that the hybrids compete for binding of uPA to the cell surface-associated uPA receptor (uPAR) expressed on human U937 cells. The simultaneous interaction of the hybrid molecules with papain and uPAR was analyzed by surface plasmon resonance. The measured K(D) value of a papain-bound cystatin variant harboring the uPAR binding sequence of uPA (chCys-uPA-(19-31)) and soluble uPAR was 17 nm (K(D) value for uPA/uPAR interaction, 5 nm). These results indicate that cystatins with a uPAR binding site are efficient inhibitors of cysteine proteases and uPA/uPAR interaction at the same time. Therefore, these compact and small bifunctional inhibitors may represent promising agents for the therapy of solid tumors.  相似文献   

13.
The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associated uPAR variant without ligand-binding properties. In extracts of U937 cells there are two uPAR variants which after complete deglycosylation have apparent molecular masses of 35,000 and 27,000. Analysis with monoclonal antibodies showed that these variants represented the intact uPAR and a two-domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its generation. Purified uPAR can be cleaved directly by uPA as well as by plasmin. The uPA-catalyzed cleavage does not require binding of the protease to the receptor through its epidermal growth factor-like receptor-binding domain, since low molecular weight uPA that lacks this domain also cleaves uPAR. This unusual reaction in which a specific binding protein is proteolytically inactivated by its own ligand may represent a regulatory step in the plasminogen activation cascade.  相似文献   

14.
Numerous studies have linked the production of increased levels of urokinase type plasminogen activator (uPA) with the malignant phenotype. It has also been shown that a specific cell surface receptor can bind uPA through a domain distinct and distant from the proteolytic domain. In an in vivo model of invasion, consisting of experimentally modified chorioallantoic membrane (CAM) of a chick embryo, only cells that concurrently expressed both uPA and a receptor for uPA, and in which the receptor was saturated with uPA, were efficient in invasion. To test whether uPA produced by one cell can, in a paracrine fashion, affect the invasive capacity of a receptor-expressing cell, we transfected LB6 mouse cells with human uPA (LB6[uPA]), or human uPA-receptor cDNA (LB6[uPAR]). LB6(uPA) cells released into the medium 1-2 Ploug units of human uPA per 10(6) cells in 24 h. The LB6(uPAR) cells expressed on their surface approximately 12,000 high affinity (Kd 1.7 x 10(-10) M uPA binding sites per cell. Unlabeled LB6(uPA) and 125-IUdR-labeled LB6(uPAR) cells were coinoculated onto experimentally wounded and resealed CAMs and their invasion was compared to that of homologous mixtures of labeled and unlabeled LB6(uPAR) or LB6(uPA) cells. Concurrent presence of both cell types in the CAMs resulted in a 1.8-fold increase of invasion of the uPA-receptor expressing cells. A four-fold stimulation of invasion was observed when cells were cocultured in vitro, prior to in vivo inoculation. Enhancement of invasion was prevented in both sets of experiments by treatment with specific antihuman uPA antibodies, indicating that uPA was the main mediator of the invasion-enhancing, paracrine effect on the receptor-expressing cells.  相似文献   

15.
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.  相似文献   

16.
17.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

18.
The high-affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays a regulatory role for both extravascular fibrinolysis and uPAR-mediated adhesion and migration on vitronectin-coated surfaces. We have recently proposed that the adhesive function of uPAR is allosterically regulated via a "tightening" of its three-domain structure elicited by uPA binding. To challenge this proposition, we redesigned the uPAR structure to limit its inherent conformational flexibility by covalently tethering domains DI and DIII via a non-natural interdomain disulfide bond (uPAR(H47C-N259C)). The corresponding soluble receptor has 1) a smaller hydrodynamic volume, 2) a higher content of secondary structure, and 3) unaltered binding kinetics towards uPA. Most importantly, the purified uPAR(H47C-N259C) also displays a gain in affinity for the somatomedin B domain of vitronectin compared with uPAR(wt), thus recapitulating the improved affinity that accompanies uPA-uPAR(wt) complex formation. This functional mimicry is, intriguingly, operational also in a cellular setting, where it controls lamellipodia formation in uPAR-transfected HEK293 cells adhering to vitronectin. In this respect, the engineered constraint in uPAR(H47C-N259C) thus bypasses the regulatory role of uPA binding, resulting in a constitutively active uPAR. In conclusion, our data argue for a biological relevance of the interdomain dynamics of the glycolipid-anchored uPAR on the cell surface.  相似文献   

19.
20.
The ability to degrade the extracellular matrix by controlled proteolysis is an important property of malignant cancer cells, which enables them to invade the surrounding tissue and to gain access to the circulation by intravasation. One proteolytic system thought to be involved in these processes is urokinase-mediated plasminogen activation. Expression of a glycolipid-anchored receptor for urokinase-type plasminogen activator (uPA) targets this system to the cell surface. This receptor (uPAR) is composed of three homologous modules belonging to the Ly-6/uPAR/alpha-neurotoxin protein domain family. Integrity of the three-domain structure of uPAR is required for maintenance of its sub-nanomolar affinity for uPA, but the functional epitope for this interaction is primarily located in uPAR domain I. Using affinity maturation by combinatorial chemistry, we have recently identified a potent 9-mer peptide antagonist of the uPA-uPAR interaction having a high affinity for uPAR (K(d)< 1 nM). Photoaffinity labelling suggests that this peptide interacts with a composite binding site in uPAR involving both domains I and III. When tested in a chicken chorioallantoic membrane assay that was developed to quantify intravasation of human cells, this antagonist was able to reduce the intravasation of HEp-3 cancer cells by approx. 60%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号