首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
We have analyzed gastrointestinal immune function in both DBA/2 and spontaneously autoimmune New Zealand Black (NZB) mice. We have studied both in vitro proliferation and differentiation of Peyer's patch cells and have measured immunoglobulin (Ig) secretion by cultured jejunal segments. Peyer's patch B cells and T cells from both DBA/2 and NZB mice showed similar proliferative responses to Con A and lipopolysaccharide (LPS), respectively. Unlike NZB splenic B cells, isolated Peyer's patch B cells from NZB mice did not spontaneously secrete Ig of any isotype. Seven-day cultures of equal numbers of Peyer's patch T cells and B cells resulted in similar patterns of secretion of IgA, IgG, and IgM in both strains. The addition of Con A to cultures of DBA/2 Peyer's patch cells consistently resulted in a onefold to threefold increase in IgA secretion after 7 days. Con A stimulation of NZB Peyer's patch cells did not produce any increment in IgA secretion. LPS stimulation of Peyer's patch cells from either strain resulted in a similar increase in IgG secretion with little effect on IgA secretion. The in vivo correlate of this finding was seen in the IgA to IgG ratio of Ig secreted by cultured jejunal fragments. In DBA/2 mice the rates of IgA/IgG varied from 2.36 to 4.85, whereas in NZB mice the ratio never exceeded 0.5. These experiments show that defects on the T cell compartment of NZB mice encompass gut-associated lymphoid tissue. The possible relationship of these findings and previously observed defects in oral tolerance is discussed.  相似文献   

2.
Mice have more than 1000 VH gene segments, and each pre-B cell must choose a single one for rearrangement to encode the V portion of the antibody H chain. Presumably, all or most of the functional VH gene segments must be chosen by the population of B lymphocytes if the organism is to express the diversity that is observed in the immune system. Control of the selection of a VH gene segment for expression is not understood. We have found that the members of the VH gene family closest to the constant genes, the 7183 family, are transcribed in a manner that is specific for the stage of B cell development after pre-B cells derived from spleens of 6- to 8-wk-old nude mice are induced to differentiate in vitro by a mixture of dendritic cells and mitogen-activated T lymphocytes (DC-T). DC-T from spleens and lymph nodes induce transient high levels of synthesis of RNA from the 7183 VH family, whereas DC-T from Peyer's patches of mice of the same age as those from which spleen and lymph node DC-T were prepared did not induce the expression of RNA from that gene family. Spleen and Peyer's patch DC-T induce secretion of similar total amounts of antibody. Therefore, the RNA synthesis from members of at least one VH gene family is specific both for the lymphoid tissue in which B cell differentiation occurs and for the developmental stage of the B lymphoid cells.  相似文献   

3.
The aim of this study was to quantify the response of Peyer's patch B cells, surface IgA-bearing (sIgA) B cells, and surface IgM-bearing (sIgM) B cells to Giardia muris infection. Following infection of a cohort of immunocompetent BALB/c mice with G. muris cysts, Peyer's patch cell suspensions were prepared at serial time points during the infection, incubated with fluorescein-conjugated monoclonal antibodies directed against murine leukocytes, B cells, sIgA B cells, sIgM B cells, or T cells, and analyzed by flow cytometry. Of total Peyer's patch leukocytes, the percentages of B cells, sIgA B cells, and sIgM B cells in uninfected BALB/c mice were 64.7 +/- 2.0% (mean +/- SEM), 30.3 +/- 1.5%, and 52.5 +/- 2.4%, respectively. The total number of Peyer's patch leukocytes increased significantly (1.8 X) during G. muris infection, and returned to control levels as the infection was cleared. The percentages of Peyer's patch T and total B cells did not change significantly during Giardia infection. However, sequential changes were observed in the percentages and numbers of sIgM and sIgA B cells during the infection. Peyer's patch sIgM B cells rapidly increased in percentage and number, reaching maximum levels 1 week after cyst inoculation. After remaining constant the first week, the number of Peyer's patch sIgA B cells increased during the second week of G. muris infection, reaching a maximum level 11-14 days after cyst inoculation. The data support the hypothesis that immunoglobulin isotype switching in Peyer's patches is induced by antigen exposure.  相似文献   

4.
We have derived from spleens of nude mice early B lineage cells that were phenotypically compatible with a pre-pre-B cell stage of differentiation. Although these cells containing large basophilic granules had the B lymphocyte antigen B220, in the cytoplasm, they had no surface B220, no cytoplasmic or surface immunoglobulin heavy or light chains, no surface Thy-1, and no surface Ia. In addition, they appeared to have little or no heavy chain gene rearrangements, including the D to J that occurs on both chromosomes prior to the VH rearrangement that forms the code for the C mu heavy chain polypeptide. Cells at even this early stage of differentiation could be induced by DC-T to express B220 on the surface and to synthesize and then to secrete immunoglobulins. These phenotypic changes were associated with a morphologic change in the cells to a lymphoblastoid appearance. Different patterns of immunoglobulin secretion resulted when pre-pre-B cells were cocultivated with DC-T from different tissues; SP DC-T induced the secretion of only IgM, PP DC-T induced the secretion of IgM as well as IgG and IgA. The early inductive event(s) appeared to occur during cell-cell contact in aggregates of the inducing DC-T and the pre-pre-B cells.  相似文献   

5.
The gastrointestinal tract is constantly exposed to a variety of potentially invasive bacteria and viruses. The first line of defense of the host against these pathogens is the intestinal mucosal surface, which consists of epithelial cells, intraepithelial lymphocytes (IELs), mucus, and secretory immunoglobulins. Little is known about the function, memory, or trafficking of IELs after intestinal infection. We found that IELs obtained 6 days after oral inoculation of mice with the intestinal pathogen rotavirus (simian strain RRV) lysed rotavirus-infected target cells; cytotoxic T lymphocytes (CTLs) were responsible for rotavirus-specific cytotoxic activity. Rotavirus-specific cytotoxic activity by IELs was (i) eliminated by treatment with Thy 1.2-specific immunoglobulin M plus complement, (ii) restricted by proteins encoded at the major histocompatibility complex, and (iii) absent in mock-infected animals. Oral inoculation of mice with RRV also induced rotavirus-specific CTLs in splenic and intestinal lymphocytes (mesenteric lymph nodes, Peyer's patch). Parenteral inoculation induced rotavirus-specific CTLs in splenic, intestinal (IELs, mesenteric lymph nodes, Peyer's patch), and nonintestinal lymphocytes (inguinal nodes). Therefore, presentation of rotavirus to the intestinal mucosal surface was not necessary to induce IELs with virus-specific cytotoxic activity. At 4 weeks after oral or parenteral inoculation of mice with RRV, rotavirus-specific CTL precursors appeared among splenic, Peyer's patch, inguinal, and mesenteric node lymphocytes, but not among IELs. IELs with rotavirus-specific cytotoxic activity may be generated from precursors at a site other than the intestinal mucosal surface. Part of the response of the host to enteric infection may include surveillance and lysis of virus-infected villus epithelial cells by IELs.  相似文献   

6.
The mucosal immune system plays an important role in blocking the penetration of invasive organisms into various mucosal surfaces. Evidence now suggests neuroendocrine peptide hormones have immunomodulatory properties, including the ability to alter mucosal immunity. The potential for opioid compounds and corticotropic hormone (ACTH) to modulate mucosal immune function was investigated. We have found beta-endorphin, ACTH, and naltrindole (delta-class opioid receptor antagonist) to significantly suppress concanavalin A-stimulated Peyer's patch lymphocyte immunoglobulin production of IgA, IgG, and IgM isotypes. Oxymorphindole, a delta class opioid receptor agonist, significantly decreased IgM but not IgA or IgG production by the mitogen-stimulated Peyer's patch lymphocytes. Both oxymorphindole and naltrindole modestly reduced interleukin-2 receptor expression of concanavalin A- (Con A)-stimulated splenic and Peyer's patch lymphocytes. Neither compound appreciably affected immunoglobulin production by lipopolysaccharide-stimulated Peyer's patch lymphocytes. Collectively, these results indicate stress-related peptides such as ACTH and opioids may be involved in the regulation of immunoglobulin synthesis by Peyer's patch lymphocytes.  相似文献   

7.
8.
Hemorrhage in mice produces alterations in intestinal B cell repertoires   总被引:1,自引:0,他引:1  
Abnormalities in immune response play a major role in the increased susceptibility to infection after hemorrhage and trauma. Infections occurring after injury often originate in the intestine. In order to determine the effects of hemorrhage on intestinal B cell function, we examined hemorrhage-induced alterations in available (clonal precursors) and actual (plasma cells) B cell repertoires among intestinal lamina propria and Peyer's patch cells. Hemorrhage resulted in complete suppression of the increase in levan-specific lamina propria and Peyer's patch plasma cell numbers following oral immunization with this bacterial polysaccharide antigen. The absolute frequency of clonal precursors specific for levan among lamina propria B cells decreased by more than twofold following hemorrhage. These results demonstrate that hemorrhage produces marked alterations in intestinal B cell repertoires, which may contribute to postinjury abnormalities in host defenses.  相似文献   

9.
Peyer's patch (PP) dendritic cells (DCs) have been shown to exhibit a distinct capacity to induce cytokine secretion from CD4(+) T cells compared with DCs in other lymphoid organs such as the spleen (SP). In this study, we investigated whether PP DCs are functionally different from DCs in the SP in their ability to induce Ab production from B cells. Compared with SP DCs, freshly isolated PP DCs induced higher levels of IgA secretion from naive B cells in DC-T cell-B cell coculture system in vitro. The IgA production induced by PP DCs was attenuated by neutralization of IL-6. In addition, the induction of IgA secretion by SP DCs, but not PP DCs, was further enhanced by the addition of exogenous IL-6. Finally, we demonstrated that only PP CD11b(+) DC subset secreted higher levels of IL-6 compared with other DC subsets in the PP and all SP DC populations, and that PP CD11b(+) DC induced naive B cells to produce higher levels of IgA compared with SP CD11b(+) DC. These results suggest a unique role of PP CD11b(+) DCs in enhancing IgA production from B cells via secretion of IL-6.  相似文献   

10.
Enterotropic mouse hepatitis virus infection in nude mice   总被引:2,自引:0,他引:2  
The cause of emaciation and diarrhea in athymic nude mice was found to be hyperplastic typhlocolitis resulting from infection with enterotropic mouse hepatitis virus (MHV). The disease was reproduced in experimentally-inoculated nude mice using intestinal homogenates from affected mice and cell culture-derived virus. Material derived from an experimental mouse was passed into neonatal Swiss mice and caused acute typhlocolitis. Virus failed to grow in NCTC-1469 cells and 17Cl-1 cells, which are normally permissive for MHV, but grew to low titer in a mouse rectal carcinoma cell line, CMT 93. These results show that an enterotropic strain of MHV can cause chronic enteric disease in athymic nude mice. The pattern of infection differs markedly from the more common MHV wasting syndrome in nude mice caused by non-enteric strains of MHV.  相似文献   

11.
12.
The frequency of B cells in Peyer's patches from normal BDF(1) and sheep red blood cell (SRBC)-fed BDF(1) mice that could respond to antigenic determinants on SRBC and trinitrophenyl (TNP) was determined using an in vitro system of limiting dilution analysis. In normal mice, one B cell in 1.9 x 10(4) Peyer's patch cells could be induced to an anti-SRBC response and one B cell in 3.6 x 10(4) Peyer's patch cells could be induced to an anti-TNP response. The frequency of B cells capable of responding to SRBC in normal mice was similar in Peyer's patches and spleen. However, after feeding mice SRBC for 3 weeks, there was a 6-fold reduction in the frequency of B cells in Peyer's patches capable of responding to SRBC but no change in the frequency of B cells capable of responding to TNP. The average clone size of Peyer's patch B cells responding to SRBC was similar in normal and SRBC-fed mice. Although antigen-feeding does not stimulate Peyer's patch B cells in situ to humoral antibody synthesis, antigen-feeding can markedly alter the reactivity of the antigen-sensitive cell population in Peyer's patches. We previously demonstrated that T cells in Peyer's patches could be specifically carrier primed for helper function by SRBC feeding. We have now demonstrated that antigen-feeding reduced significantly the frequency of B cells in Peyer's patches capable of responding to the fed antigen. Peyer's patches appear to serve an important function as a sampling site for intestinal antigens.  相似文献   

13.
Development of mucosal immunity and tolerance requires coordinated expression of a number of genes within the mucosa-associated lymphoid tissue (MALT). To study the roles of these genes in the MALT, we have established a MALT-specific gene transfer model using replication-defective adenovirus as vector. In this model, the target gene of interest is directly delivered into the Peyer's patch by intra-Peyer's patch injection of the recombinant virus. Using this gene transfer model, we investigated the roles of B7-1 and IL-12 in the development of mucosal tolerance. We found that intra-Peyer's patch injection of OVA induced Ag-specific T cell hyporesponsiveness, as manifested by decreased T cell proliferation and IL-2/IFN-gamma production upon subsequent immune challenge. Intra-Peyer's patch B7-1 gene transfer at the time of OVA administration partially reversed the inhibition of T cell proliferation and IL-2 secretion, but had no effect on IFN-gamma production. By contrast, intra-Peyer's patch IL-12 gene transfer completely restored T cell proliferation and IFN-gamma secretion and partially reversed IL-2 inhibition. Using an adoptive TCR transgenic model, we further demonstrated that B7 and IL-12 played distinct roles during the inductive phase of mucosal tolerance. B7 selectively increased T cell proliferation and IL-2 secretion without affecting IFN-gamma production, whereas IL-12 increased both IL-2 and IFN-gamma production. These results indicate that B7 alone may not be sufficient to abrogate mucosal tolerance, and that cytokines such as IL-12 may also be required. Based on these findings, we propose a new model to explain the paradoxical roles of B7 in mucosal immunity and tolerance.  相似文献   

14.
K Yokomori  M M Lai 《Journal of virology》1992,66(12):6931-6938
The SJL mouse strain is resistant to infection by some strains of the murine coronavirus mouse hepatitis virus (MHV), such as JHM and A59. The block to virus infection has been variously attributed to defects in virus receptors or virus spread. Since the cellular receptors for MHV, mmCGM1 and mmCGM2, have recently been identified as members of the carcinoembryonic antigen family, we reexamined the possible defectiveness of the MHV receptors in SJL mouse strain. Cloning and sequencing of the cDNAs of both mmCGMs RNAs from SJL mice revealed that they were identical in size to those of the susceptible C57BL/6 (B6) mouse. There was some sequence divergence in the N terminus of the mmCGM molecules between the two mouse strains, resulting in a different number of potential glycosylation sites. This was confirmed by in vitro translation of the mmCGM RNAs, which showed that the glycosylated mmCGM2 of SJL was smaller than that of B6 mice. However, transfection of either mmCGM1 or mmCGM2 from SJL mice into MHV-resistant Cos 7 cells rendered the cells susceptible to MHV infection. The ability of the SJL mmCGM molecules to serve as MHV receptors was comparable to that of those from B6. These molecules are expressed in SJL mouse brain and liver in a similar ratio and in amounts equivalent to those in the B6 mouse. Furthermore, we demonstrated that an SJL-derived cell line was susceptible to A59 but resistant to JHM infection. We concluded that the MHV receptor molecules in the SJL mouse are functional and that the resistance of SJL mice to infection by some MHV strains most likely results from some other factor(s) required for virus entry or some other step(s) in virus replication.  相似文献   

15.
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.  相似文献   

16.
17.
Gammaherpesvirus 68 (γHV68, or MHV68) is a naturally occurring rodent pathogen that replicates to high titer in cell culture and is amenable to in vivo experimental evaluation of viral and host determinants of gammaherpesvirus disease. However, the inability of MHV68 to transform primary murine B cells in culture, the absence of a robust cell culture latency system, and the paucity of MHV68-positive tumor cell lines have limited an understanding of the molecular mechanisms by which MHV68 modulates the host cell during latency and reactivation. To facilitate a more complete understanding of viral and host determinants that regulate MHV68 latency and reactivation in B cells, we generated a recombinant MHV68 virus that encodes a hygromycin resistance protein fused to enhanced green fluorescent protein as a means to select cells in culture that harbor latent virus. We utilized this virus to infect the A20 murine mature B-cell line and evaluate reactivation competence following treatment with diverse stimuli to reveal viral gene expression, DNA replication, and production of progeny virions. Comparative analyses of parental and infected A20 cells indicated a correlation between infection and alterations in DNA damage signaling following etoposide treatment. The data described in this study highlight the potential utility of this new cell culture-based system to dissect molecular mechanisms that regulate MHV68 latency and reactivation, as well as having the potential of illuminating biochemical alterations that contribute to gammaherpesvirus pathogenesis. In addition, such cell lines may be of value in evaluating targeted therapies to gammaherpesvirus-related tumors.  相似文献   

18.
Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a strategy that appears to be conserved between at least EBV and MHV68.  相似文献   

19.
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.  相似文献   

20.
Collins CM  Speck SH 《PloS one》2012,7(3):e33230
Infection of mice with murine gammaherpesvirus 68 (MHV68) provides a tractable small animal model to study various aspects of persistent gammaherpesvirus infection. We have previously utilized a transgenic MHV68 that expresses enhanced yellow fluorescent protein (EYFP) to identify infected cells. While this recombinant MHV68 has been useful for identifying infected cell populations by flow cytometry, it has been suboptimal for identification of infected cells in tissue sections due to the high solubility of EYFP. Efficient detection of EYFP expressed from the MHV68 genome in tissue sections requires fixation of whole organs prior to sectioning, which frequently leads to over-fixation of some cellular antigens precluding their detection. To circumvent this issue, we describe the generation and characterization of a transgenic MHV68 harboring a fusion gene composed of the EYFP coding sequence fused to the histone H2B open reading frame. Because the H2bYFP fusion protein is tightly bound in nucleosomes in the nucleus it does not freely diffuse out of unfixed tissue sections, and thus eliminates the need for tissue fixation. We have used the MHV68-H2bYFP recombinant virus to assess the location and distribution of virus infected B cells in germinal centers during the peak of MHV68 latency in vivo. These analyses show that the physical location of distinct populations of infected germinal center B cells correlates well with their surface phenotype. Furthermore, analysis of the distribution of virus infection within germinal center B cell populations revealed that ca. 70% of MHV68 infected GC B cells are rapidly dividing centroblasts, while ca. 20% have a clear centrocyte phenotype. Finally, we have shown that marking of infected cells with MHV68-H2bYFP is extended long after the onset of latency - which should facilitate studies to track MHV68 latently infected cells at late times post-infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号