共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to 8α-[N(3)-histidyl]-riboflavin which had previously been characterized as the product on condensation of Nα-blocked histidine with 8α-bromotetraacetyl-riboflavin (after removal of the blocking groups), a second histidylflavin isomer is obtained in 20–25% yield of the total histidylflavin fraction. This isomer is identified as 8α-[N(1)-histidyl]-riboflavin by chemical degradation of the histidylflavin analog after alkylation of the imidazole with methyliodide. Acid hydrolysis at high temperature yields 3-methylhistidine, identified by its mobility on high voltage electrophoresis, while Zn reduction yields riboflavin, identified by thin layer chromatography. The properties of synthetic 8α-[N(1)-histidyl]-riboflavin are identical with the histidylriboflavin obtained from thiamine dehydrogenase and β-cyclopiazonate oxidocyclase in pKa of fluorescence quenching, electrophoretic mobility, and in reduction by sodium borohydride. Thus, both the N(1) and the N(3) histidylriboflavin isomers occur in nature. The compound obtained on acid treatment of 8α-[N(3)-histidyl]-riboflavin (previously thought to be 8α-[N(1)-histidyl]-riboflavin) is shown to differ from the parent compound only in the ribityl side chain. 相似文献
2.
Beta-Cyclopiazonate oxidocyclase from Penicillium cyclopium has been previously shown to contain flavin dinucleotide in covalent linkage to the protein. In the present study, a pure flavin mononucleotide peptide was isolated from the enzyme by tryptic-chymotryptic digestion, chromatography on Florisil and on diethylaminoethylcellulose, and hydrolysis with nucleotide pyrophosphatase. The flavin peptide contains 9 amino acids, including histidine in linkage to the flavin, and Asx as the N-terminal residue. The fluorescence of the flavin in the FMN peptide is profoundly quenched even at pH 3.2, where protonation of the imidazole prevents queching of the flavin fluorescence by histidine. This quenching appears to be due to interaction of the flavin with a tryptophan residue, as the quenching is abolished by oxidation of the tryptophan with performic acid. Similarly, the fluorescence of the tryptophan in the peptide is quenched, presumably by the flavin. The flavin of beta-cyclopiazonate oxidocylcase is attached, by the way of the 8alpha-methylene group, to the imidazole ring of a histidine. The aminoacylflavin isolated from the enzyme is identical in the pKa of its imidazole group, in reduction by NaBH4, and in other properties with synthetic 8alpha-(N1-histidyl)riboflavin. The pKa of the histidylriboflavin component of the oxidocyclase is 5.2 before and 5.0 after acid modification of the ribityl chain, as is found in the synthetic derivative. It is concluded that the enzyme contains the N1 isomer of histidylriboflavin and that acid hydrolysis of flavin peptides isolated from the oxidocyclase, while liberating histidylriboflavin, also causes acid modification of the ribityl chain of the flavin moiety. 相似文献
3.
4.
5.
Butyryl-CoA dehydrogenase from Megasphera elsdenii catalyzes the exchange of the alpha- and beta-hydrogens of substrate with solvent [Gomes, B., Fendrich, G., & Abeles, R. H. (1981) Biochemistry 20, 1481-1490]. The stoichiometry of this exchange was determined by using 3H2O label as 1.94 +/- 0.1 per substrate molecule. The rate of 3H label incorporation into substrate under anaerobic conditions is monophasic, indicating that both the alpha- and beta-hydrogens exchange at the same rate. The exchange in 2H2O leads to incorporation of one 2H each into the alpha- and the beta-positions of butyryl-CoA, as determined by companion 1H NMR experiments and confirmed by mass spectroscopic analysis. In contrast, with general acyl-CoA dehydrogenase from pig kidney, only exchange of the alpha-hydrogen was found. The beta-hydrogen is the one that is transferred (reversibly) to the flavin 5-position during substrate dehydrogenation. This was demonstrated by reacting 5-3H- and 5-2H-reduced 5-deaza-FAD-general acyl-CoA dehydrogenase with crotonyl-CoA. Only one face of the reduced flavin analogue is capable of transferring hydrogen to substrate. The rate of this reaction is 11.1 s-1 for 5-deaza-FAD-enzyme and 2.2 s-1 for [5-2H]deaza-FAD-enzyme, yielding an isotope effect of 5. These values compare with a rate of 2.6 s-1 for the reaction of native reduced enzyme with crotonyl-CoA. The two reduced enzymes (normal vs. 5-deaza-FAD-enzyme) thus react at similar rates, indicating a similar mechanism.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Human alpha-1-antichymotrypsin has been purified to homogeneity by the following sequential steps--(a) ammonium sulfate fractionation; (b) chromatography on Cibacron Blue Sepharose at pH 7.0; and (c) chromatography on SP-Sephadex C-50 at pH 5.5. The inhibitor has a molecular weight near 68,000 and contains approximately 26% carbohydrate alpha-1-Antichymotrypsin has an amino-terminal arginine and a carboxy-terminal glycine. It also has some homology with alpha-1-PI based on amino-terminal sequence analysis of both proteins. Complexes of alpha-1-antichymotrypsin with human chymotrypsin and human leukocyte cathepsin G are stable in sodium dodecyl sulfate and have molecular weights near 90,000 suggesting 1:1 complex formation on a molar basis between inhibitor and enzyme. 相似文献
7.
8.
H Kasai Z Yamaizumi F Yamamoto T Bessho S Nishimura M Berger J Cadet 《Nucleic acids symposium series》1992,(27):181-182
Potosensitized formation of 8-hydroxyguanine in DNA by riboflavin was observed. A reaction mechanism involving guanine radical cation and hydration reaction was proposed. This hypothesis was confirmed by the incorporation of [18O]-atom within guanine moiety in isotopic experiments using [18O]-H2O. Photosensitized formation of oh8Gua by riboflavin was also observed in cellular DNA. 相似文献
9.
The reaction of reduced 1-d-FMN with oxygen and decanal results in bioluminescence with kinetic and spectral properties similar to those of the reaction with FMNH2, even though the spectral (absorbance, fluorescence) and chemical properties of the oxidized forms differ greatly. This emission, which is about 10-15% as efficient as with FMNH2, is postulated to involve the intermediacy of the corresponding 4a-hydroperoxide, the fluorescence of which occurred transiently. The N(1) protonated species had been proposed as the emitter in the reaction with FMNH2, but the 1-deaza analog cannot be protonated at the corresponding position, thus excluding this possibility. 相似文献
10.
The human-tracheal, epithelial alpha-(1----2)-L-fucosyltransferase that transfers L-fucose from GDP-L-fucose to an acceptor containing a beta-D-galactopyranosyl group at the nonreducing terminal was characterized. Optimal enzyme activity was obtained at pH 6.5. 20-30mM MnCl2 (or CaCl2), and 0.05% Triton X-100 or 0.5% Tween 20. Mg2+ and Ba2+ ions moderately enhanced the enzyme activity, whereas Fe2+, Co2+, Zn2+, and Cd2+ ions were inhibitory. The enzyme activity was inhibited by N-ethylmaleimide and nucleotides of guanine, inosine, xanthine, and uridine. However, ATP and dithiothreitol did not affect the enzyme activity. The apparent Michaelis constant for GDP-L-fucose, freezing point-depressing glycoproteins (expressed as Gal----GalNAc----Thr), and phenyl beta-D-galactopyranoside was 0.29, 5.70, and 25.4mM, respectively. Under alkali-borohydride conditions (0.05M NaOH-M NaBH4, 45 degrees, 20 h), an L-[14C]fucosyltrisaccharide was released from the product obtained by use of freezing point-depressing glycoprotein as the acceptor. The alpha-L anomeric configuration of the fucoside was determined by the release of L-[14C]fucose from the purified trisaccharide by Turbo cornutus alpha-L-fucosidase. The (1----2) linkage of the L-fucosyl group to the D-galactosyl residue was established by methylation technique (m.s.-g.l.c.). The present enzyme has properties similar to those of the human milk alpha-(1----2)-L-fucosyltransferase which is encoded by a secretor gene. 相似文献
11.
Peptides generated from enzymatic hydrolysis of chicken enolase and the alpha- and beta-subunits of bovine F1-ATPase were analyzed by mass spectrometry to determine the nature of their modified N-termini. In the case of chicken enolase, a peptide was isolated from a Staphylococcus aureus proteinase digest by HPLC and analyzed directly by fast atom bombardment mass spectrometry (FABMS). In conjunction with mass spectral evidence obtained from the methyl ester derivative and a secondary tryptic peptide, a structure is proposed containing an N-acetyl serine at the N-terminus. The alpha-subunit of bovine mitochondrial ATPase was chromatographed by HPLC after S. aureus proteinase digestion and a single peak was analyzed on the basis of predicted retention times. A Mr 716 was determined by FABMS and pyrrolidone carboxylic acid was deduced on the basis of its amino acid composition and partial Edman sequence data. The beta-subunit of ATPase produced a series of closely eluting peaks on HPLC after limited digestion with trypsin of the alpha 2 beta 2 complex. These peptides were analyzed by both Edman degradation and FABMS. These data showed the N-terminus to be frayed with N-terminal sequences beginning in pyro-Glu-Ala-Ser, Gln-Ala-Ser, Glu-Ala-Ser, Ala-Ser, and Ser but with no N-acetyl-Ser as was previously thought. 相似文献
12.
Treatment of 3 beta-benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (I) with gaseous HCl in chloroform at -40 degrees C gave, in 87% yield, 3 beta-benzoyloxy-7 alpha,15 beta-dichloro-5 alpha cholest-8(14)-ene (III). Reduction of the latter compound with lithium aluminum hydride in ether at room temperature for 20 min gave, in 86% yield, 7 alpha-15 beta-dichloro-5 alpha-cholest-8(14)-en-3 beta-ol (IV). The latter compound was fully characterized and assignments of the individual carbon peaks in the 13C nuclear magnetic resonance spectra of this sterol have been completed. Reduction of III with excess lithium aluminum hydride in refluxing ether for 4 days gave, in 74% yield, 5 alpha-cholesta-7,14-dien-3 beta-ol (VI). Reduction of the dichloro-steryl benzoate III with lithium triethylborohydride in tetrahydrofuran gave, in 88% yield, 5 alpha-cholest-8(14)-en-3 beta-ol (VII). A similar reduction using lithium triethylborodeuteride led to the formation of [7 beta, 15 xi-2 H2]-VIIa. Treatment of III with concentrated HCl in a mixture of chloroform and methanol gave, in 79% yield, 3 beta-benzoyloxy-5 alpha-cholest-8(14)-en-15-one (II) which was characterized as such and as the corresponding free sterol. 相似文献
13.
14.
15.
Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component 总被引:7,自引:0,他引:7
The formate-hydrogen lyase complex of Escherichia coli decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. The complex consists of two separable enzymatic activities: a formate dehydrogenase and a hydrogenase. The formate dehydrogenase component (FDHH) of the formate-hydrogen lyase complex was purified to near homogeneity in two column chromatographic steps. The purified enzyme was composed of a single polypeptide of molecular weight 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Metal analysis showed each mole of enzyme contained 3.3 g atoms of iron. Denaturation of FDHH released a compound which, when oxidized, displayed a fluorescence spectrum similar to that of the molybdopterin cofactor found in certain other enzymes. The enzyme contained selenium in the form of selenocysteine as determined by radioactive labeling of the enzyme with 75Se and amino acid analysis. FDHH activity was maximal between pH 7.5 and 8.5; however, the enzyme was maximally stable at pH 5.3-6.4 and highly unstable above pH 7.5. Nitrate and nitrite salts caused a drastic reduction in activity. Although azide inhibited FDHH activity, it also protected the enzyme from inactivation by oxygen. 相似文献
16.
Bibert S Roy S Schaer D Felley-Bosco E Geering K 《The Journal of biological chemistry》2006,281(51):39142-39151
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties. 相似文献
17.
Regulation of ornithine decarboxylase activity by spermidine and the spermidine analogue N1N8-bis(ethyl)spermidine. 总被引:1,自引:6,他引:1
下载免费PDF全文

Polyamine biosynthesis in intact cells can be exquisitely controlled with exogenous polyamines through the regulation of rate-limiting biosynthetic enzymes, particularly ornithine decarboxylase (ODC). In an attempt to exploit this phenomenon as an antiproliferative strategy, certain polyamine analogues have been identified [Porter, Cavanaugh, Stolowich, Ganis, Kelly & Bergeron (1985) Cancer Res. 45, 2050-2057] which lower ODC activity in intact cells, have no direct inhibitory effects on ODC, are incapable of substituting for spermidine (SPD) in supporting cell growth, and are growth-inhibitory at micromolar concentrations. In the present study, the most effective of these analogues, N1N8-bis(ethyl)SPD (BES), is compared with SPD in its ability to regulate ODC activity in intact L1210 cells and in the mechanism(s) by which this is accomplished. With respect to time and dose-dependence of ODC suppression, both polyamines closely paralleled one another in their response curves, although BES was slightly less effective than SPD. Conditions of minimal treatment leading to near-maximal ODC suppression (70-80%) were determined and found to be 3 microM for 2 h with either SPD or BES. After such treatment, ODC activity was fully recovered within 2-4 h when cells were re-seeded in drug-free media. By assessing BES or [3H]SPD concentrations in treated and recovered cells, it was possible to deduce that an intracellular accumulation of BES or SPD equivalent to less than 6.5% of the combined cellular polyamine pool was sufficient to invoke ODC regulatory mechanisms. Decreases in ODC activity after BES or SPD treatment were closely paralleled by concomitant decreases in ODC protein. Since cellular ODC mRNA was not similarly decreased by either BES or SPD, it was concluded that translational and/or post-translational mechanisms, such as increased degradation of ODC protein or decreased translation of ODC mRNA, were probably responsible for regulation of enzyme activity. Experimental evidence indicated that neither of these mechanisms seemed to be mediated by cyclic AMP or ODC-antizyme induction. On the basis of the consistent similarities between BES and SPD in all parameters studied, it is concluded that the analogue most probably acts by the same mechanisms as SPD in regulating polyamine biosynthesis. 相似文献
18.
The proteins of the bioluminescent bacterium Beneckea harveyi have been labelled with [3H]leucine prior to the induction of bioluminescence, and with [14C]leucine during the development of the bioluminescent system. An aliphatic aldehyde dehydrogenase and a NAD(P)H:flavin oxidoreductase, two enzymes that may be directly involved in the metabolism of the substrates (aldehyde, FMNH2) for the luminescent reaction catalyzed by luciferase, were purified and the isotope ratios of their respective polypeptide chains determined after sodium dodecyl sufate gel electrophoresis. A comparison of these isotope ratios to (a) the isotope ratios of the induced polypeptide chains of luciferase, purified in the same experiment, and (b) the average isotope ratio for the proteins synthesized in concert with growth has provided direct evidence that the synthesis of aldehyde dehydrogenase but not NAD(P)H:flavin oxidoreductase is induced during the development of bioluminescence. 相似文献
19.
20.
Polymorphisms of alpha-1-acid (orosomucoid), alpha-2-HS-glycoproteins and alpha-1-B among the Parsis of India. 总被引:1,自引:0,他引:1
Genetic polymorphisms of plasma alpha 1-acid glycoprotein (oro-somucoid, ORM), alpha 2-HS-glycoprotein (A2HS) and alpha 1-B-glycoprotein (alpha 1B) were studied in a group of Parsis in Bombay, India. The frequencies of ORM1*1, ORM1*2 and ORM1*3 were found to be 0.636, 0.356 and 0.008, respectively. A2HS*1, A2HS*2 and A2HS*3 frequencies were 0.855, 0.135 and 0.010, while the frequencies of A1B*1 and A1B*2 were 0.881 and 0.119, respectively. The phenotype distribution at all three loci was at Hardy-Weinberg equilibrium. The ORM2 locus was monomorphic in the Parsis. 相似文献