首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

2.
IL-17 is a cytokine implicated in the regulation of inflammation. We investigated the role of this cytokine in neutrophil recruitment using a model of LPS-induced lung inflammation in mice. In the bronchoalveolar lavage, LPS induced a first influx of neutrophils peaking at day 1, followed by a second wave, peaking at day 2. IL-17 levels were increased during the late phase neutrophilia (day 2), and this was concomitant with an increased number of T cells and macrophages, together with an increase of KC and macrophage-inflammatory protein-2 levels in the lung tissue. Intranasal treatment with a neutralizing murine anti-IL-17 Ab inhibited the late phase neutrophilia. In the bronchoalveolar lavage cells, IL-17 mRNA was detected at days 1, 2, and 3 postchallenge, with a strong expression at day 2. This expression was associated with CD4(+) and CD8(+) cells, but also with neutrophils. When challenged with LPS, despite the absence of T cells, SCID mice also developed a neutrophilic response associated with IL-17 production. In BALB/c mice, IL-15 mRNA, associated mainly with neutrophils, was evidenced 1 day after LPS challenge. In vitro, IL-15 was able to induce IL-17 release from purified spleen CD4(+) cells, but not spleen CD8(+) or airway neutrophils. We have shown that IL-17, produced mainly by CD4(+) cells, but also by neutrophils, plays a role in the mobilization of lung neutrophils following bacterial challenge. In addition, our results suggest that IL-15 could represent a physiological trigger that leads to IL-17 production following bacterial infection.  相似文献   

3.
We used a TCR-transgenic mouse to investigate whether Th2-mediated airway inflammation is influenced by Ag-specific CD4+CD25+ regulatory T cells. CD4+CD25+ T cells from DO11.10 mice expressed the transgenic TCR and mediated regulatory activity. Unexpectedly, depletion of CD4+CD25+ T cells before Th2 differentiation markedly reduced the expression of IL-4, IL-5, and IL-13 mRNA and protein when compared with unfractionated (total) CD4+ Th2 cells. The CD4+CD25--derived Th2 cells also expressed decreased levels of IL-10 but were clearly Th2 polarized since they did not produce any IFN-gamma. Paradoxically, adoptive transfer of CD4+CD25--derived Th2 cells into BALB/c mice induced an elevated airway eosinophilic inflammation in response to OVA inhalation compared with recipients of total CD4+ Th2 cells. The pronounced eosinophilia was associated with reduced levels of IL-10 and increased amounts of eotaxin in the bronchoalveolar lavage fluid. This Th2 phenotype characterized by reduced Th2 cytokine expression appeared to remain stable in vivo, even after repeated exposure of the animals to OVA aerosols. Our results demonstrate that the immunoregulatory properties of CD4+CD25+ T cells do extend to Th2 responses. Specifically, CD4+CD25+ T cells play a key role in modulating Th2-mediated pulmonary inflammation by suppressing the development of a Th2 phenotype that is highly effective in vivo at promoting airway eosinophilia. Conceivably, this is partly a consequence of regulatory T cells facilitating the production of IL-10.  相似文献   

4.
Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4(+) T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-gamma knockout mice pointing to the essential role of IFN-gamma in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4(+) T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-gamma-producing cells or cells dependent on IFN-gamma activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.  相似文献   

5.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

6.
Endogenous and exogenous IL-6 inhibit aeroallergen-induced Th2 inflammation   总被引:4,自引:0,他引:4  
Chronic Th2-dominated inflammation and exaggerated IL-6 production are characteristic features of the asthmatic airway. To understand the processes that are responsible for the chronicity of this response and the role(s) of IL-6 in the regulation of airway Th2 inflammation, we compared the responses induced by OVA in sensitized wild-type mice, IL-6 deficient (-/-) mice, and transgenic mice in which IL-6 was overexpressed in the airway (CC10-IL-6 mice). When compared with wild-type mice, IL-6-/- mice manifest exaggerated inflammation and eosinophilia, increased levels of IL-4, IL-5, and IL-13 protein and mRNA, exaggerated levels of eotaxin, JE/monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and -2, and mRNA, increased bronchoalveolar lavage (BAL) TGF-beta1, and exaggerated airway responses to aerosolized methacholine. In contrast, CC10-IL-6 mice, on both C57BL/6 and BALB/c backgrounds, manifest diminished inflammation and eosinophilia, decreased levels of IL-4, IL-5, and IL-13 protein and mRNA, and decreased levels of bronchoalveolar lavage TGF-beta1. IL-6 also decreased the expression of endothelial VCAM-1 and airway responsiveness to methacholine in these animals. These alterations in the IL-6-/- and CC10-IL-6 mice were not associated with significant decreases or increases in the levels of IFN-gamma, respectively. These studies demonstrate that endogenous and exogenous IL-6 inhibit aeroallergen-induced Th2 inflammation and that this inhibition is not mediated by regulatory effects of IFN-gamma. IL-6 may be an important anti-inflammatory, counterregulatory, and healing cytokine in the airway.  相似文献   

7.
Concomitant infection of murine CMV (MCMV), an opportunistic respiratory pathogen, altered Th1/Th2 cytokine expression, decreased bronchoalveolar lavage (BAL) fluid eosinophilia, and increased mucus production in a murine model of OVA-induced allergic airway disease. Although no change in the total number of leukocytes infiltrating the lung was observed between challenged and MCMV/challenged mice, the cellular profile differed dramatically. After 10 days of OVA-aerosol challenge, eosinophils comprised 64% of the total leukocyte population in BAL fluid from challenged mice compared with 11% in MCMV/challenged mice. Lymphocytes increased from 11% in challenged mice to 30% in MCMV/challenged mice, and this increase corresponded with an increase in the ratio of CD8(+) to CD4(+)TCRalphabeta lymphocytes. The decline in BAL fluid eosinophilia was associated with a change in local Th1/Th2 cytokine profiles. Enhanced levels of IL-4, IL-5, IL-10, and IL-13 were detected in lung tissue from challenged mice by RNase protection assays. In contrast, MCMV/challenged mice transiently expressed elevated levels of IFN-gamma and IL-10 mRNAs, as well as decreased levels of IL-4, IL-5, and IL-13 mRNAs. Elevated levels of IFN-gamma and reduced levels of IL-5 were also demonstrated in BAL fluid from MCMV/challenged mice. Histological evaluation of lung sections revealed extensive mucus plugging and epithelial cell hypertrophy/hyperplasia only in MCMV/challenged mice. Interestingly, the development of airway hyperresponsiveness was observed in challenged mice, not MCMV/challenged mice. Thus, MCMV infection can modulate allergic airway inflammation, and these findings suggest that enhanced mucus production may occur independently of BAL fluid eosinophilia.  相似文献   

8.
Airway inflammation associated with asthma is characterized by massive infiltration of eosinophils, mediated in part by specific chemoattractant factors produced in the lung. Allergen-specific Th2 cells appear to play a central role in asthma; for example, adoptively transferred Th2 cells induced lung eosinophilia associated with induction of specific chemokines. Interestingly, Th2 supernatant alone administered intranasally to naive mice induced eotaxin, RANTES, monocyte-chemotactic protein-1, and KC expression along with lung eosinophilia. We tested the major cytokines individually and found that IL-4 and IL-5 induced higher levels of macrophage-inflammatory protein-1alpha and KC; IL-4 also increased the production of monocyte-chemotactic protein-1; IL-13 and IL-4 induced eotaxin. IL-13 was by far the most potent inducer of eotaxin; indeed, a neutralizing anti-IL-13 Ab removed most of the eotaxin-inducing activity from Th2 supernatants, although it did not entirely block the recruitment of eosinophils. While TNF-alpha did not stimulate eotaxin production by itself, it markedly augmented eotaxin induction by IL-13. IL-13 was able to induce eotaxin in the lung of JAK3-deficient mice, suggesting that JAK3 is not required for IL-13 signaling in airway epithelial cells; however, eosinophilia was not induced in this situation, suggesting that JAK3 transduces other IL-13-mediated mechanisms critical for eosinophil recruitment. Our study suggests that IL-13 is an important mediator in the pathogenesis of asthma and therefore a potential target for asthma therapy.  相似文献   

9.
Intratracheal instillation of Sephadex particles is a convenient model for assessing the impact of potential anti-inflammatory compounds on lung eosinophilia thought to be a key feature in asthma pathophysiology. However, the underlying cellular and molecular mechanisms involved are poorly understood. We have studied the time course of Sephadex-induced lung eosinophilia, changes in pulmonary T cell numbers, and gene and protein expression as well as the immunological and pharmacological modulation of these inflammatory indices in the Sprague Dawley rat. Sephadex increased T cell numbers (including CD4(+) T cells) and evoked a pulmonary eosinophilia that was associated with an increase in gene/protein expression of the Th2-type cytokines IL-4, IL-5, and IL-13 and eotaxin in lung tissue. Sephadex instillation also induced airway hyperreactivity to acetylcholine and bradykinin. A neutralizing Ab (R73) against the alphabeta-TCR caused 54% depletion of total (CD2(+)) pulmonary T cells accompanied by a significant inhibition of IL-4, IL-13 and eotaxin gene expression together with suppression (65% inhibition) of eosinophils in lung tissue 24 h after Sephadex treatment. Sephadex-induced eosinophilia and Th2 cytokine gene and/or protein expression were sensitive to cyclosporin A and budesonide, compounds that inhibit T cell function, suggesting a pivotal role for T cells in orchestrating Sephadex-induced inflammation in this model.  相似文献   

10.
Viral respiratory infections can cause bronchial hyperresponsiveness and exacerbate asthma. In mice, respiratory syncytial virus (RSV) infection results in airway hyperresponsiveness (AHR) and eosinophil influx into the airways. The immune cell requirements for these responses to RSV infection are not well defined. To delineate the role of CD8 T cells in the development of RSV-induced AHR and lung eosinophilia, we tested the ability of mice depleted of CD8 T cells to develop these symptoms of RSV infection. BALB/c mice were depleted of CD8 T cells using anti-CD8 Ab treatment before intranasal administration of infectious RSV. Six days postinfection, airway responsiveness to inhaled methacholine was assessed by barometric body plethysmography, and numbers of lung eosinophils and levels of IFN-gamma, IL-4, and IL-5 in bronchoalveolar lavage fluid were monitored. RSV infection resulted in airway eosinophilia and AHR in control mice, but not in CD8-depleted animals. Further, whereas RSV-infected mice secreted increased amounts of IL-5 into the airways as compared with noninfected controls, no IL-5 was detectable in both bronchoalveolar lavage fluid and culture supernatants from CD8-depleted animals. Treatment of CD8-depleted mice with IL-5 fully restored both lung eosinophilia and AHR. We conclude that CD8 T cells are essential for the influx of eosinophils into the lung and the development of AHR in response to RSV infection.  相似文献   

11.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

12.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

13.
The CD28 ligands CD80 and CD86 are expressed on APC, and both provide costimulatory function. However, the reason for the expression of two separate CD28 ligands remains unclear. We have previously shown that blockade of CD80 costimulation by Y100F-Ig, a CTL-associated Ag-4 (CTLA4)-Ig mutant that does not bind CD86, inhibits the development of lung inflammatory immune responses, but does not affect blood eosinophilia or Ab production. Each of those responses was inhibited by treatment with CTLA4-Ig, which binds both CD80 and CD86. To clarify the mechanism underlying these observations we have developed a model of lung inflammation using adoptively transferred CD4(+) T cells expressing a Valpha11(+)Vbeta3(+) transgenic TCR specific for I-E(k) and moth cytochrome c. Treatment with Y100F-Ig inhibited the induction of lung eosinophilia in adoptively transferred mice. However, Y100F-Ig did not detectably affect the accumulation of Ag-specific T cells at the site of peptide deposit or in the draining lymphoid tissues. Acquisition of an activated phenotype and expression of adhesion molecules required for migration into the lung were modestly affected. Importantly, treatment with Y100F-Ig diminished the ability of T cells to produce the cytokines IL-4 and IL-5 following intranasal challenge with Ag. All the responses examined were severely inhibited by treatment with CTLA4-Ig. We conclude that T cells require CD80 costimulation for the optimal production of IL-5 following intranasal administration of Ag. Decreased IL-5 production is the most likely explanation for the diminished airway eosinophilia observed.  相似文献   

14.
Peripheral tolerance to allergens is mediated in large part by the naturally occurring lung CD4(+)CD25(+) T cells, but their effects on allergen-induced airway responsiveness have not been well defined. Intratracheal, but not i.v., administration of naive lung CD4(+)CD25(+) T cells before allergen challenge of sensitized mice, similar to the administration of the combination of rIL-10 and rTGF-beta, resulted in reduced airway hyperresponsiveness (AHR) and inflammation, lower levels of Th2 cytokines, higher levels of IL-10 and TGF-beta, and less severe lung histopathology. Significantly, CD4(+)CD25(+) T cells isolated from IL-10(-/-) mice had no effect on AHR and inflammation, but when incubated with rIL-10 before transfer, suppressed AHR, and inflammation, and was associated with elevated levels of bronchoalveolar lavage TGF-beta levels. By analogy, anti-TGF-beta treatment reduced regulatory T cell activity. These data identify naturally occurring lung CD4(+)CD25(+) T cells as capable of regulating lung allergic responses in an IL-10- and TGF-beta-dependent manner.  相似文献   

15.
IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal administration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25-induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex.  相似文献   

16.
Although the preliminary characterization of chemokines and their receptors has been prolific, comparatively little is known about the role of chemokines in the evolution of immune responses. We speculate that the preferential recruitment of a particular immune cell population has implications for the short- and long-term features of an adaptive response. To test this hypothesis, we employed adenovirus-mediated gene transfer to express the Th1-affiliated, CXC chemokine IFN-gamma-inducible protein (IP) 10 in the airways of mice undergoing a mucosal sensitization regimen known to result in a Th2-polarized allergic response. This resulted in a approximately 60-75% inhibition of eosinophils in the bronchoalveolar lavage (BAL); these inflammatory changes were accompanied by enhanced IFN-gamma, ablated IL-4, and, peculiarly, unaltered IL-5 and eotaxin levels in the BAL. The effect of IP-10 expression was shown to be dependent on IFN-gamma, as there was no statistically significant reduction in BAL eosinophilia in IFN-gamma knockout mice subjected to the IP-10 intervention. Flow cytometric analysis of mononuclear cells in the lung revealed a approximately 60% reduction in the fraction of CD4(+) cells expressing T1/ST2, a putative Th2 marker, and a parallel increase in the proportion expressing intracellular IFN-gamma following IP-10 treatment. The effect of IP-10 expression at the time of initial Ag encounter is persistent, as mice rechallenged with OVA following the resolution of acute inflammation exhibited reduced eosinophilia and IL-4 in the BAL. Collectively, these data illustrate that local expression of the chemokine IP-10 can introduce Th1 phenomena to a Th2-predisposed context and subvert the development of a Th2 response.  相似文献   

17.
IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  相似文献   

18.
IL-17 is a pivotal proinflammatory molecule in asthmatics. However, the cellular source of IL-17 in asthma has not been identified to date. In this study, we report that macrophages rather than Th17 cells are the main producer of IL-17 in allergic inflammation related to asthma. After OVA challenge in a mouse model mimicking allergic asthma, the increased IL-17(+) cells in the lung were mainly CD11b(+)F4/80(+) macrophages, instead of T cells or others. Importantly, IL-17(+) alveolar macrophages (AMs), but not IL-17(+) interstitial macrophages, were significantly increased after allergen challenge. The increase of IL-17(+) AMs was not due to the influx of IL-17(+) macrophages from circulation or other tissues, but ascribed to the activation of AMs by mediator(s) secreted by IgE/OVA-activated mast cells. Depleting alveolar macrophages or neutralizing IL-17 prevented the initiation of OVA-induced asthma-related inflammation by inhibiting the increase of inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid. Th2 cytokine IL-10 could down-regulate IL-17 expression in alveolar macrophages. The increased IL-17 and the decreased IL-10 in bronchoalveolar lavage fluid were further confirmed in asthmatic patients. These findings suggest that IL-17 is mainly produced by macrophages but not Th17 cells in allergic inflammation related to asthma. Mast cell-released mediators up-regulate the expression of IL-17 by macrophages, whereas IL-10 down-regulates IL-17 expression.  相似文献   

19.
IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.  相似文献   

20.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号