首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.  相似文献   

2.
3.
The nucleotide sequence of part of the tra region of R100 including traJ and traY was determined, and the products of several tra genes were identified. The nucleotide sequence of traJ, encoding a protein of 223 amino acids, showed poor homology with the corresponding segments of other plasmids related to R100, but the deduced amino acid sequences showed low but significant homology. The first four amino acids at the N-terminal region of the TraJ protein were not essential for positive regulation of expression of traY, the first gene of the traYZ operon. The nucleotide sequence of traY shows that this gene may use TTG as the initiation codon and that it encodes a protein of 75 amino acids. Analysis of the traY gene product, which was obtained as the fusion protein with beta-galactosidase, showed that the N-terminal region of the product has an amino acid sequence identical to that deduced from the assigned frame but lacks formylmethionine. traY of plasmid F, which encodes a larger protein than the TraY protein of R100, is thought to use ATG as an initiation codon. However, a TTG initiation codon was found in the preceding region of the previously assigned traY coding frame of F. Interestingly, when translation of traY of F was initiated from TTG, the amino acid sequence homologous to the TraY protein of R100 appeared in tandem in the TraY protein of F. This may suggest that traY of F has undergone duplication of a gene like the traY gene of R100.  相似文献   

4.
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.  相似文献   

5.
The middle wall protein gene of Bacillus brevis 47 has two potential translation initiation sites located tandemly in the same reading frame. We demonstrate here that both sites are utilized to start translation in B. brevis 47. Translation from the first site (located upstream) gives rise to a precursor of the middle wall protein with an extension peptide of 31 amino acids preceding the signal peptide. The precursor was cleaved at the same position as that of the precursor translated from the second site. The TTG codon seems to play an appreciable role in the initiation of translation in B. brevis 47.  相似文献   

6.
7.
A nucleotide sequence of 2271 basepairs has been determined from cloned E. coli DNA which contains ompA. Withing that sequence, starting at nucleotide 1037, an open translational reading frame encodes a protein of 367 amino acids which starting with amino acid 22 agrees with the primary structure of protein II. The preceeding 21 amino acids constitute a typical signal sequence. There is a non-translated region of 360 nucleotides in front of the translational start. The insertion point of an IS1 element 110 nucleotides upstream from the start codon and an amber codon at the position of amino acid residue 28 have been localized in the DNA from two ompA mutants.  相似文献   

8.
The gene encoding the type I pullulanase from the extremely thermophilic anaerobic bacterium Fervidobacterium pennavorans Ven5 was cloned and sequenced in Escherichia coli. The pulA gene from F. pennavorans Ven5 had 50.1% pairwise amino acid identity with pulA from the anaerobic hyperthermophile Thermotoga maritima and contained the four regions conserved among all amylolytic enzymes. The pullulanase gene (pulA) encodes a protein of 849 amino acids with a 28-residue signal peptide. The pulA gene was subcloned without its signal sequence and overexpressed in E. coli under the control of the trc promoter. This clone, E. coli FD748, produced two proteins (93 and 83 kDa) with pullulanase activity. A second start site, identified 118 amino acids downstream from the ATG start site, with a Shine-Dalgarno-like sequence (GGAGG) and TTG translation initiation codon was mutated to produce only the 93-kDa protein. The recombinant purified pullulanases (rPulAs) were optimally active at pH 6 and 80 degrees C and had a half-life of 2 h at 80 degrees C. The rPulAs hydrolyzed alpha-1,6 glycosidic linkages of pullulan, starch, amylopectin, glycogen, alpha-beta-limited dextrin. Interestingly, amylose, which contains only alpha-1,4 glycosidic linkages, was not hydrolyzed by rPulAs. According to these results, the enzyme is classified as a debranching enzyme, pullulanase type I. The extraordinary high substrate specificity of rPulA together with its thermal stability makes this enzyme a good candidate for biotechnological applications in the starch-processing industry.  相似文献   

9.
The slyA gene, which has been implicated in the virulence of Salmonella serovar Typhimurium and its survival in macrophages, is widely distributed among different Salmonella serovars. In this study, we cloned and sequenced the translational initiation region of the slyA gene from nine different serovars and found sequence differences in the previously proposed ATG initiation codon but not in a TTG triplet, another putative initiation codon in the slyA gene. Therefore, we determined the actual translational initiation site of the slyA gene by analyzing slyA genes with defined mutation in either the ATG or TTG sequences in an in vitro translation assay and a quantitative hemolytic assay in Escherichia coli. The replacement of TTG by TTC in the slyA gene significantly reduced both the amount of protein synthesized and the hemolytic activity of a transformed strain of E. coli, while replacement of ATG by ATC had no effect in these assays. In addition, the amino acid sequence analysis of the His-tagged SlyA protein showed that it was identical with the amino acid sequence deduced from the 5' end of the slyA gene with a TTG initiation codon. Our results suggest that TTG serves as the translational initiation codon for the slyA gene of Salmonella.  相似文献   

10.
11.
The amino terminus of VP2', the major capsid protein of the parvovirus H-1, was identified and mapped to the H-1 genome. The protein initiates at the start codon at nucleotide 2797 and is translated uninterrupted to the stop codon at nucleotide 4582. The primary sequence predicts a protein of 593 amino acids (65,500 daltons) with an amino acid composition which very closely matches the experimentally determined composition of the pure protein. The data suggest that the VP2' mRNA has a 5' leader sequence of ca. 650 bases and that protein translation initiates downstream from the sole splice junction.  相似文献   

12.
13.
Streptococcus pneumoniae is one of the few species within the group of low-G +C gram-positive bacteria reported to contain no d-alanine in teichoic acids, although the dltABCD operon encoding proteins responsible for d-alanylation is present in the genomes of two S. pneumoniae strains, the laboratory strain R6 and the clinical isolate TIGR4. The annotation of dltA in R6 predicts a protein, d-alanine-d-alanyl carrier protein ligase (Dcl), that is shorter at the amino terminus than all other Dcl proteins. Translation of dltA could also start upstream of the annotated TTG start codon at a GTG, resulting in the premature termination of dltA translation at a stop codon. Applying a novel integrative translation probe plasmid with Escherichia coli 'lacZ as a reporter, we could demonstrate that dltA translation starts at the upstream GTG. Consequently, S. pneumoniae R6 is a dltA mutant, whereas S. pneumoniae D39, the parental strain of R6, and Rx, another derivative of D39, contained intact dltA genes. Repair of the stop codon in dltA of R6 and insertional inactivation of dltA in D39 and Rx yielded pairs of dltA-deficient and dltA-proficient strains. Subsequent phenotypic analysis showed that dltA inactivation resulted in enhanced sensitivity to the cationic antimicrobial peptides nisin and gallidermin, a phenotype fully consistent with those of dltA mutants of other gram-positive bacteria. In addition, mild alkaline hydrolysis of heat-inactivated whole cells released d-alanine from dltA-proficient strains, but not from dltA mutants. The results of our study suggest that, as in many other low-G+C gram-positive bacteria, teichoic acids of S. pneumoniae contain d-alanine residues in order to protect this human pathogen against the actions of cationic antimicrobial peptides.  相似文献   

14.
A novel ENU-induced mutation in the mouse leading to a nuclear and zonular opacity of the eye lens (Aey1) was mapped to chromosome 1 between the markers D1Mit303 and D1Mit332. On the basis of the chromosomal position, the gamma-crystallin encoding gene cluster (Cryg) and the betaA2-crystallin encoding gene Cryba2 were tested as candidate genes. An A --> T mutation destroys the start codon of the Cryge gene in the mutants; this mutation was confirmed by the absence of a restriction site for NcoI in the corresponding genomic fragment of homozygous mutants. The next in-frame start codon is 129 bp downstream; this predicted truncated gammaE-crystallin consists of 131 amino acids, resulting in a molecular mass of 14 kD. However, another open reading frame was observed just 19 bp downstream of the regular Cryge start codon, resulting in a protein of 119 amino acids and a calculated molecular weight of 13 kD. Western blot analysis using polyclonal antibodies against gamma-crystallins or the novel Aey1-specific protein demonstrated the specific expression of the Aey1 protein in the cataractous lenses only; the truncated form of the gammaE-crystallin could not be detected. Therefore, it is concluded that the novel protein destroys the sensitive cellular structure of the eye lens.  相似文献   

15.
16.
The gene coding for proline iminopeptidase in Bacillus coagulans was cloned and expressed in Escherichia coli. Nucleotide sequencing revealed an 861-bp open reading frame with an unusual TTG initiation codon, encoding a 287-amino-acid protein. The calculated molecular weight of the product was 32,415. The amino acid sequences of the amino-terminal region and those of some peptide fragments obtained by endoproteinase Asp-N digestion of the purified enzyme completely coincided with those deduced from the nucleotide sequence. The rare TTG initiation codon that normally codes for leucine was translated as a formal initiation codon; a methionine residue was found at the amino terminus of the enzyme. By using a vector bearing the strong tac promoter, an expression level as high as 200-fold that of the first clone was achieved. The replacement of the TTG initiation codon with ATG and a simultaneous reduction of the distance to the tac promoter resulted in a further increase of 2.5-fold. The expressed enzyme was easily purified to homogeneity by hydrophobic chromatography on a Toyopearl HW-65C column and crystallization, with a recovery of activity of 36%. The molecular weight was found to be 33,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration on a Hi-Load 16/60 Superdex 200 fast protein liquid chromatography column. The expressed enzyme showed the same catalytic and physicochemical properties as those of the wild type, specifically cleaving the N-terminal proline from small substrates.  相似文献   

17.
C R Harwood  D M Williams  P S Lovett 《Gene》1983,24(2-3):163-169
Gene cat-86 of Bacillus pumilus, specifying chloramphenicol-inducible chloramphenicol acetyltransferase, was previously cloned in Bacillus subtilis on plasmid pUB110. The nucleotide sequence of cat-86 indicates that the gene encodes a protein of 220 amino acids and contains TTG as the translations-initiation codon. The proteins specified by cat-86 and the cat genes present on pC194, pC221 and Tn9 appear to share regions of amino acid sequence similarity. cat-86 is a structural gene on the B. subtilis expression plasmid pPL608. Restriction sites exist within the gene that should permit the product of inserted heterologous coding sequences to be synthesized in B. subtilis as fusion proteins.  相似文献   

18.
The nucleotide sequence of the xynA gene of Ruminococcus flavefaciens 17 was determined and found to consist of a 2862bp open reading frame beginning with a TTG start codon. The predicted product, XYLA, consisted of distinct amino-terminal (A) and carboxy terminal (C) domains (248 amino acids, including a putative signal sequence, and 332 amino acids, respectively) linked by a repetitive sequence (B, 374 amino acids) extraordinarily rich in asparagine (45%) and glutamine (26%) residues. Domains A and C were shown to be capable of expressing xylanase activity independently of each other when suitably truncated derivatives of the xynA coding region were expressed as lacZ fusions. The activities associated with the two domains were shown to differ with respect to the average size of hydrolysis products formed from oat-spelt xylan, with domain C releasing relatively more xylose and domain A more xylo-oligosaccharides. The amino acid sequence of domain A of XYLA closely resembled that of the Bacillus pumilus xynA enzyme (45% identical residues). On the other hand domain C showed significant similarity (33% to 40% identical residues) to a different group of bacterial xylanases and exoglucanases exemplified by the Caldocellum saccharolyticum xynA and celB products. The xynA product is, therefore, a bifunctional enzyme having two dissimilar catalytic domains capable of acting on xylan.  相似文献   

19.
The signal for the termination of protein synthesis in procaryotes.   总被引:24,自引:14,他引:10       下载免费PDF全文
The sequences around the stop codons of 862 Escherichia coli genes have been analysed to identify any additional features which contribute to the signal for the termination of protein synthesis. Highly significant deviations from the expected nucleotide distribution were observed, both before and after the stop codon. Immediately prior to UAA stop codons in E. coli there is a preference for codons of the form NAR (any base, adenine, purine), and in particular those that code for glutamine or the basic amino acids. In contrast, codons for threonine or branched nonpolar amino acids were under-represented. Uridine was over-represented in the nucleotide position immediately following all three stop codons, whereas adenine and cytosine were under-represented. This pattern is accentuated in highly expressed genes, but is not as marked in either lowly expressed genes or those that terminate in UAG, the codon specifically recognised by polypeptide chain release factor-1. These observations suggest that for the efficient termination of protein synthesis in E. coli, the 'stop signal' may be a tetranucleotide, rather than simply a tri-nucleotide codon, and that polypeptide chain release factor-2 recognises this extended signal. The sequence following stop codons was analysed in genes from several other procaryotes and bacteriophages. Salmonella typhimurium, Bacillus subtilis, bacteriophages and the methanogenic archaebacteria showed a similar bias to E. coli.  相似文献   

20.
The amino-terminal structure and the essential functional region of the cysB gene product of Escherichia coli K-12 were analyzed by the method of gene fusion. The translational start codon of the cysB gene was located by determining the amino-terminal sequence of a hybrid protein containing the first 31 amino acid residues of the CysB protein at the amino terminus of beta-galactosidase(LacZ protein). The fact that two other CysB'-'LacZ hybrid polypeptides expressed a normal CysB activity indicated that the functional region of the CysB protein was located within the first 215 amino acid residues of the total 324 amino acids deduced from the nucleotide sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号