首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Seasonal succession and variation in species composition, density,biomass, age distribution and frequency of zooplankton (mainlythe Copepoda) were analysed during the austral summer of of1977/1978 in Ezcurra Inlet, a part of the Antarctic coastalecosystem. Small zooplankters (i.e., cyclopoids of the generaOncaea and Oithona, and calanoids Drepanopus pectinatus andScolocithricella glacialis) were found to predominate in termsof abundance and percentage contribution. The zooplankton biomasswas dominated by larger organisms of the Metrididae and Calanidae(Calanoida). The maximum abundance and maximum biomass of copepodswere recorded in February; two small peaks in copepod biomassbeing observed in late December and late January, and a lesserbiomass peak in late December. The vertical distribution ofcopepods in terms of their diel and seasonal (December, January,February, March) changes showed a day-time maximum to have occurredin the near-bottom layer, the nocturnal distribution being bimodalwith peaks within 0–10 m and 25–50 m. The summerzooplankton community in Ezcurra Inlet is controlled by trophic(phytoplankton composition and density) and hydrological (waterexchange with Bransfield Strait) conditions prevailing in thearea.  相似文献   

2.
A film-based holography system was used in conjunction withinstrumentation that detected bioluminescent thin layers torecord the spatial distribution of zooplankton and their preyin the Gulf of Maine, USA. The holocamera and instruments weremounted on the Johnson Sea Link (JSL) in a setup that minimizedthe disturbance to the sample volume. More than 143 hologramswere automatically scanned to provide focused images of 5000–10000 particles and their three-dimensional coordinates in each894 cm3 sample. The reconstructed volumes provided clear imagesof intermingling copepods species, nauplii, Pseudonitzschiadiatoms and particles in the 10 µm–5 mm size range.Spatial analysis of the nearest neighbor distance (NND) of thesmallest particles showed a random distribution, but detritusparticles showed small-scale clustering in regions below thepycnocline. A detritus maximum, found several meters below thepycnocline, at 20–30 m, was determined to be caused byfecal pellets in various stages of degradation. This regionalso contained elevated concentrations of calanoids, cyclopoidsand harpacticoids. In one third of the cases, the harpacticoids,Aegisthus sp, were attached to detritus.  相似文献   

3.
Short term experiments on calanoid-cyclopoid-phytoplankton interactions   总被引:1,自引:1,他引:0  
To investigate their potential effects on each other in nature, calanoid (Diaptomus clavipes and D. siciloides) and cyclopoid (Acanthocyclops vernalis and Mesocyclops edax) copepod populations were manipulated in 5 liter aquaria in laboratory experiments of 20–60 days duration. Diaptomus generally had a strongly negative effect on both cyclopoid species. The cyclopoids established populations more successfully when introduced to aquaria before calanoids than they did when calanoids were already present. On the other hand, whether introduced earlier or later than the cyclopoids, Diaptomus populations were unaffected by Acanthocyclops and were strongly depressed by Mesocyclops. Diaptomus effects on the phytoplankton were often strong but varied markedly among experiments. They included reduction of populations of edible algae, such as Chlamydomonas, which are essential for both calanoid and cyclopoid nauplii, and large increases in inedible algae, such as Kirchneriella. Feeding experiments revealed that under conditions of food scarcity Acanthocyclops nauplii survived less well than did Diaptomus nauplii. Competition for edible phytoplankton seemed to be a key factor in the calanoid-cyclopoid interactions, since the survival of herbivorous cyclopoid larvae determined the abundance of the predaceous adults. This indicates that the competitive effects of calanoids on cyclopoids often may exceed the predative effects of cyclopoids on calanoids.  相似文献   

4.
The goal of this study was to quantify periods of activity andvelocities of late naupliar and early copepodid stages of planktoniccopepods occurring regularly on the southeastern continentalshelf of the USA. We obtained quantitative information on eightspecies, including adult females of Oithona plumifera. All studieswere conducted at food concentrations near or above satiationlevels. Activities ranged from 0.85% (adult females of O.plumifera)to 100% of time (nauplii and copepodids of various calanoidspecies). Motion velocities (excluding escape motion) coveredmore than one order of magnitude: from 0.39 mm s–1 fornauplii of Temora stylifera to 5.24 mm s–1 for naupliiof Oncaea mediterranea. Ranges of activities of species rangefrom occasional for early juveniles to adult females of O.plumiferato 100% for the same range of T.stylifera, the latter creatinga feeding current from N III onwards, the former not at all.Of notable interest is Centropages velificatus which moves intermittentlyas a late nauplius, continuously as an early copepodid and intermittentlyas an adult. All observed calanoid late nauplii and copepodidsmove in three dimensions, excluding copepodids of the shelfbreak/oceanicParacalanus aculeatus. The results indicate not only significantdifferences in motion behavior between cyclopoids and calanoids,but also between calanoid species. Yet, some calanoid speciesshow little ontogenetic changes at all.  相似文献   

5.
Egg production, growth and development rates of Oithona similiswere measured in the laboratory as a function of food concentrationand composition. On an optimum diet, development is isochronaland growth is near exponential. The maximum juvenile growthrate at 15C (0.2 day–1) is similar to juvenile growthin calanoid copepods. The maximum weight-specific egg productionrate (0.1 day–1), on the other hand, is substantiallyless than in free-spawning calanoids, but similar to that inegg-carrying calanoids. In the Kattegat, Oithona spp. egg productionis strongly limited by food during summer and controlled bytemperature during winter. The seasonal signal in fecundityand population biomass is much weaker than in the co-occurringfree-spawning calanoid genera, where fecundity and populationbiomass undergo dramatic seasonal viaration. 1Present address: Instituto Nacional de Investigacin y DesarrolloPesquero, INIDEP, CC 175, Playa Grande, Mar del Plata, Argentina  相似文献   

6.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

7.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

8.
The predation impact of Cyclops vicinus on rotifers was studiedunder near-natural conditions in small enclosures to evaluatewhether copepod predation is responsible for the decline ofrotifers in Lake Constance in spring. Cyclops vicinus fed selectivelyon Synchaeta spp.; Keratella and Polyarthra spp. were not selectedfor. Predation rates increased with prey density up to a maximumof 37 Synchueta day–1 at a density of 1.6 x 106 Synchaetam–2, i.e. at -1200 Synchaeta l–1. Calculation ofcropping rates suggests that Cyclops alone can control the abundanceof Synchaeta in spring, i.e. that mainly Cyclops is responsiblefor the decline of Synchaeta species in Lake Constance in May.  相似文献   

9.
Predaceous feeding habits of Limnocalanus macrurus   总被引:1,自引:0,他引:1  
Limnocalanus macrurus, a large, glacial-relict copepod, hasbeen assumed an omnivore or a herbivore; predaceous habits ofthe species are unknown. The predaceous feeding habits of Limnocalanusfrom Lake Michigan were studied in the laboratory using naturalprey. Predation rates were highest on copepod nauplii. Copepoditesof Diaptomus spp. and Cyclops spp. were preyed upon at lowerrates. Limnocalanus preyed selectively upon nauplii <300µm. Small cyclopoid copepodites (<–750 µm)were also selected over large copepodites. Experiments usingtwo prey types showed that nauplii were selected over all copepodites,and that no selectivity existed for either diaptomid or cyclopoidcopepodites. Predaceous feeding habits began in the fourth copepoditestage of Limnocalanus. Predaceous feeding rates of Limnocalanuschanged seasonally being highest in late spring and autumn andlowest in summer and early winter. Since Limnocalanus also feedson net-phytoplankton, predation rate changes may be relatedto changes in the relative abundance of large phytoplanktonand naupliar prey in nature. Limnocalanus predation may be animportant factor in structuring the zooplankton community. Present address: Great Lakes Research Division, University Michigan,Ann Arbor, MI 48109, USA  相似文献   

10.
The objective of this study was to identify the key copepodspecies and their life cycles, and provide evidence for anyseasonal and spatial changes in the copepod community in Malangen,a fjord located 30 km to the south of Tromsø in NorthernNorway (69°30'N, 18°21'E). As a result of high levelsof freshwater run-off in May, the fjord became highly stratifiedwith a sharp pycnocline at 10–30 m depth from May to August.The generation patterns of six copepod species are described.Calanusfinmarchicus produced one generation during the spring thatyear, whereas two generations appeared to be produced by bothPseudocalanus acuspes and P.minutus: one in spring (March-June)and the other in autumn (August-December). However, it is uncertainto what extent P.minutus regularly produces a second generation.Two peaks of CI-CIII Metridia spp. were found; there were differencesalong the length of the fjord in the timing of these, but therelative contributions of M.longa and M.lucens are uncertain.Chiridius armatus CI-CIII peaked in abundance in the spring,which indicates that one main generation was produced at theouter station of the fjord. The copepod community in Malangencould be grouped into three entities according to their numericalabundance during the year one group of highly abundant forms,generally with maxima >50 000 individuals m–3 (C.finmarchicus,Microcalanus sp., Oithona similis , Oithona spinirostris, Acartiasp. and Pseudocalanus spp.), a second group of less abundantspecies with a clear seasonality in abundance, varying from500 to 50 000 individuals m–3 (M.longa, M.lucens, Calanushyperboreus, Carmatus, Tenwra longicornis, Oncaea sp., Euchaetanorvegica and Scolecithrwella minor), and a third group of 14holoplanktonic species, sporadically occurring in the fjord.The study demonstrates clear gradients in the abundance of fivespecies along the length of the fjord: the recruiting generationof C.finmarchicus occurred in higher abundances at the outerstation in May and June compared to the other inner sites. Laterin the season, the reverse situation appeared, in which thepopulation was more abundant in the inner part of the fjorcCalanw hyperboreus increased abruptly in abundance from lowwinter levels to a maximum in April-May, and declined steadilyduring the season (except at the innermost station). Metridialucens, M.longa and C.armatus demonstrated different distributionpatterns in Malangen that matched their preferred areas of distribution.Both M.lucens and C.armatus are known as oceanic and deep-waterspecies, respectively, and these were prevalent at the two outersites in Malangen. Metridia longa is a more nentic species andwas found in highest numbers at the two innermost sites. Themechanisms for the differences in abundance among these specieswithin the fjord are discussed.  相似文献   

11.
Copepod grazing on the toxic dinofiagellate Dinophysis acuminatafrom the west coast of France (La Rochelle) was studied witha concentrated (40–70 µm) phytoplankton assemblagedominated by Leptocylindrus danicus, D.acuminata, Ceratium fususand Ceratium furca. Copepod nauplii were also present. Threeto five copepods/copepodites (Acartia clausi, Isias clavipesand Centropages typicus) were incubated together with the phytoplankton.Dinophysis acuminata was grazed upon by all copepod species.However, to some extent, I.clavipes and C.typicus avoided itas food. Dinophysis acuminata cells represented for them only5–10% of total ingested carbon during the first 24 h,and almost all individuals survived and thrived well. In contrast,A.clausi did not avoid D.acuminata. which represented 30% ofingested carbon in 1 day. Acartia clausi then had a lower survivalthan the two other copepod species. However, the survival ofA.clausi was high in control incubations, where a plankton communitywithout D.acuminata was used as food. It is concluded that theokadaic acid of D acuminata is potentially toxic to some grazers,and/or might function as an allelopathic grazer repellent.  相似文献   

12.
The ingestion of autotrophic and heterotrophic nanoplanktonby two estuarine copepods, Eurytenora affinis and Acarith bifilosa,was measured in various environmental conditions using the incubationmethod and epifluorescence microscopy. Egg production of thespecies was also deter mined in order to estimate their carbonrequirements. Assuming a gross efficiency of egg productionof 0.3, nanoplanktonic carbon ingested always met the carbonrequirements suggesting that, most of the time, other carbonsources could be unnecessaly. Nanoplankton ingestion by A.bifilosa(from 128 to 1693 cells ind.–1 h–1) was dominatedby autotrophic forms (60–97%) and was seriously affectedby high (>100 mg l–1 suspended particulate matter (SPM)concentrations. Nanoplankton ingestion by E.affinis (from 300to 1049 cells ind–1 h–1) was relatively stable incomparison, but this latter species seemed to switch its grazingpressure from autotrophic to heterotrophic forms when SPM concentrationsincreased. Thus, two copepod species, living in the same estuary,presented two different feeding behaviours, probably to maximizeenergy input per unit of energy expenditure. Such differencescould contribute to the spatial and seasonal segregation ofthese species which is usually observed.   相似文献   

13.
Experiments were conducted to measure to what extent cyclopoidcopepods ingest ciliated protists. Five freshwater ciliate species,ranging in size from 22 to 120 µm diameter, were testedwith two species of cyclopoids: Cyclops abyssorum and Cyclopskolensis. Ingestion rates were measured by radiolabeling ciliateswith 14C, and from these, functional response curves (the changein ingestion rate with changing cell densities) were constructed.Cyclopoids ingest ciliates with very high estimated maximalrates of >200 cells cyclopoid–1 h–1 However,there are large differences in ingestion rates that are notpredictable by the size of predator or prey. One ciliate speciesof intermediate size, Coleps hirtus, is nearly immune from cyclopoidpredation at all measured ciliate densities. Three other smallciliate species that move in rapid jumps elicit Honing type3 functional responses, with very little change in ingestionrates at low ciliate densities. Thus, while cyclopoids are capableof having a very considerable impact on ciliate populations,some ciliate species appear to have behavioral, morphologicalor chemical defenses to reduce their vulnerability. This callsinto question the practice of considering ciliates a homogeneousgroup when constructing food web models.  相似文献   

14.
The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the biogeographic relevance of the inland copepod fauna of Costa Rica requires more detailed surveys.  相似文献   

15.
In laboratory experiments, the bacterial flora of the zooplanktonmicrobial environments seawater, fecal pellets and associatedwith the external and internal surfaces of the copepod Acartiatonsa(Dana) were examined. The bacteria associated with fecal pelletswere dominated by Bacillus spp., Cytophaga/Flavobacterium spp.,Vibrio spp. and Pseudomonas spp. The same genera were foundin the seawater (0.22 7mu;m filtered) in which the pellets wereincubated. The bacteria showed a characteristic growth succession,and the abundance increased several orders of magnitude in theseawater during incubation of the pellets, indicating growthand proliferation based on the disintegrating/degrading fecalpellets. A carbon budget calculation revealed that organic matterfrom degrading fecal pellets could cover the carbon demand forthe growing bacterioplankton. The composition of the bacterialcommunity in the seawater and the fecal pellets also indicateda colonization of the pellets from bacterioplankton. The compositionof the bacteria associated with the copepods showed that bacterialgenera characterized as surface associated were preferentiallyassociated with fecal pellets, animal surfaces and intestines.This suggests a specific intestinal flora in the cultivatedcopepods composed of 103 culturable bacteria per intestine (colony-formingunits, c.f.u.) or 105 bacteria per intestine (acridine orangedirect counts, AODC), possibly colonizing the intestine passivelyduring filtration of algae. The activity of the bacterial communitieswas examined by the numencal ratio c.f.u.:AODC, where 1–19%of the bacteria were found active, with no significant differencebetween microbial environments.  相似文献   

16.
A series of single-factor in situ experiments was conductedin a mesotrophic lake in Brandenburg, North Germany, to studythe predatory impact of Eudiaptomus graciloides (adults, copepodites,nauplii), cyclopoid copepods (adult Diacyclops bicuspidatus,Thermocyclops oithonoides) and daphnids (adult Daphnia hyalina,Daphnia cucullata) on the microbial community (bacteria, autotrophicpicoplankton, flagellates, ciliates). All zooplankton speciestested reduced the ciliate community significantly and ingestionrates were always higher for ciliates in the 20–55 µmsize category as compared to smaller ciliates (10–20 µm).Adult E.graciloides, which exhibited the highest predatory impacton ciliates, differed from cyclopoids and daphnids by theirability to decimate ciliates to very low abundances. Ingestionrates of ciliates by the crustacean zooplankton followed thesequence E.graciloides > daphnids = cyclopoids = copepodites.While top-down control was evident for ciliates, top-down effectsdown to the autotrophic picoplankton and flagellates were mostlyrestricted to Daphnia-dominated treatments. Top-down effectswere never strong enough to produce negative bacterial growthrates. For all zooplankton tested, clearance rates for ciliatesexceeded those for phytoplankton. Besides the potential of thecrustacean zooplankton to influence the structure of ciliatecommunities, ciliates may contribute to the energy demands ofcopepods and daphnids, especially when phytoplankton resourcesare limited.  相似文献   

17.
In contrast to the relatively well documented impact of particulate-feedingfish on zooplankton communities, little attention has been devotedto the impact of filter-feeding fish. Filter-feeding silverand bighead carp are the most intensively cultured fish speciesin Asia and comprise much of the production of Chinese aquaculture.However, little information is known about the impact of eitherfish on the zooplankton community. Long-term changes in theCopepoda community (1957–1996) were studied at two samplingstations of a subtropical Chinese lake (Lake Donghu) dominatedby silver and bighead carp. For both calanoids and cyclopoids,the littoral station (I) was much more resource profitable thanthe pelagic station (II). There has been a tremendous increasein the annual fish catch over the past 30 years due to the increasedstocking with fingerlings of the two carp species. There wasa notably higher fish density at Station I than at Station II.Cyclopoid abundance was notably higher at Station I than atStation II during the 1950s to the 1980s, while the reversebecame true in the 1990s. This is probably because when fishabundance increased to an extremely high level, the impact offish predation on the cyclopoids became more important thanthat of food resources at the littoral station. At both stations,cyclopoid abundance was relatively low in spite of the presenceof abundant prey. Similarly, calanoid density did not differsignificantly between the two stations in the 1950s and 1960s,but was significantly lower at Station I than at Station IIduring the 1980s and 1990s. Such changes are attributed to thegradient of fish predation between the stations and an increasingpredation pressure by the fish. The increased fish predationalso correlated with a shift in summer-dominant calanoids fromlarger species to smaller ones. In conclusion, the predaceouscyclopoids are affected by fish predation to a much lesser extentthan the herbivorous calanoids, and therefore increased predationby filter-feeding fish results in a definite increase in thecyclopoid/calanoid ratio. Predation by filter-feeding fish hasbeen a driving force in shaping the copepod community structureof Lake Donghu during the past decades.  相似文献   

18.
Long-term dynamics of main mesozooplankton species in the central Baltic Sea   总被引:14,自引:0,他引:14  
Long-term dynamics (1959–1997) of the copepod speciesPseudocalanus elongatus, Temora longicornis, Acartia spp. andCentropages hamatus, as well as the taxonomic group of cladocerans,are described for the open sea areas of the central Baltic Sea.Differences between areas, i.e. Bornholm Basin, Gdansk Deepand Gotland Basin, as well as between 5 year periods, were investigatedby means of Analysis of Variance (ANOVA). No significant differencesin mesozooplankton biomass between areas were found. On theother hand, clear time-trends could be demonstrated and relatedto salinity and temperature, with P.elongatus biomass mainlydependent on salinity and T.longicornis, Acartia spp. and cladoceransbiomasses dependent, to a large extent, on thermal conditions.Decreasing salinities since the early 1980s due to a lack ofmajor inflows of highly saline water from the North Sea andincreased river run-off, both triggered by meteorological conditions,obviously caused a decrease in biomass of P.elongatus. Contrarily,the standing stocks of the other abundant copepod species andcladocerans followed, to a large degree, the temperature developmentand showed, in general, an increase. The shift in species compositionduring this period is considered to be a reason for decreasinggrowth rates of Baltic herring (Clupea harengus) since the early1980s, and for sprat (Sprattus sprattus) since the early 1990s.Generally, it is suggested that low mesozooplankton biomassesin the 1990s were caused, at least partially, by amplified predationby clupeid fish stocks.  相似文献   

19.
Feeding by larval and post-larval ctenophores on microzooplankton   总被引:2,自引:0,他引:2  
Feeding by the coastal ctenophorc, Mnemiopsis leidyi, on microplanktonwas investigated. Larval ctenophores (tentaculate stage) grewbest and had the highest survival rates when offered a mixtureof ciliates and copepod nauplii. Larvae did not survive whenoffered phytoplankton alone. Clearing of planktonjc ciliatesby post-larval ctenophores was a function of the ciliate speciesand the size of the predator. Removal of small ciliates (<20µm in size) and phytoplankton was negligible. Small post-larvalctenophores (volume <4 cm3) had higher biovolume-specificclearing rates (0.5–1.5 1 cm–3 day–1) thandid larger ctenophores fed the same ciliate species. Duringin situ incubations, adult M. leidyi removed ciliates, rotifersand copepod nauplii from natural microplankton assemblages.The data indicate that non-crustacean microzooplanlctoo arean important component of the diet of larval and post-larvallocate cteoophores, particularly when copepod standing stocksare low.  相似文献   

20.
The pelagic harpacticoid copepod Macrosetella gracilis usesthe colonial cyanobacterium Trichodesmium not only as a physicalsubstrate for juvenile development, but also as a food source.By associating itself with a buoyant colonial cyanobacterium,M.gracilis has developed a successful mode of life for existencein the plankton. Further evidence of M.gracills' dependenceon Trichodesmium as a physical substrate is demonstrated bypreviously undescribed microscopic observations of a gravidM.gracilis female attaching eggs to a Trichodesmium colony.Shipboard experiments investigating the ingestion and assimilationof Trichodesmium carbon (C) were conducted in September 1991and January/February 1992 in waters of the Bahamas and the Caribbean,respectively. Macrosetella gracilis not only ingested, but rapidlyincorporated, cyanobacterial organic matter into its own cellularmaterial. Utilization of ingested Trichodesmium by M.graciliswas investigated by assessing the metabolic partitioning andincorporation of 14C-labelled Trichodesmium into copepod lipids,proteins, polysaccharides and low-molecular-weight (LMW) compoundsusing sequential biochemical fractionation techniques. Despitevariations in grazing rates between the two sites and times(September 1991,0.017 µg C* µg–1 C h–1;January 1992, 0.134 µg C * µg–1 C h–1,the partitioning of incorporated C into the different biochemicalfractions was relatively consistent. There was rapid assimilationof ingested C into the LMW ({small tilde}60%) and polysaccharidefractions ({small tilde}30%) in the first few hours, with asubsequent increase in the percent C incorporated into protein.On average, {small tilde}21% of the Trichodesmium C ingestedby M.gracilis was assimilated. Therefore, M.gracilis is an importantsecondary link in the food web of oligotrophic waters whereTrichodesmium is abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号