首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphofructokinase (Pfk1, EC 2.7.1.11) plays a key regulatory role in the glycolytic pathway. The combination of X-ray crystallographic and biochemical data has provided an understanding of the different conformational changes that occur between the active and inhibited states of the bacterial enzyme, and of the role of the two bacterial effectors. Eukaryotic phosphofructokinases exhibit a far more sophisticated regulatory mechanism, they are more complex structures regulated by a large number of effectors (around 20). Saccharomyces cerevisiae Pfk1 is an 835 kDa hetero-octamer which shows cooperative binding for fructose-6-phosphate (F6P) and non-cooperative binding for ATP. The 3D structure of the F6P-bound state was obtained by cryo-electron microscopy to 1.1 nm resolution. This electron microscopy structure, in combination with molecular replacement using the bacterial enzyme has helped provide initial phases to solve the X-ray structure of the F6P-bound state 12S yeast truncated-tetramer. Biochemical and small-angle X-ray scattering (SAXS) studies had indicated that Pfk1 underwent a large conformational change upon Mg-ATP binding. We have calculated a reconstruction using reference-based 3D projection alignment methods from 0 degrees images acquired from frozen-hydrated preparations of the enzyme in the presence of Mg-ATP. The ATP-bound structure is more extended or open, and the calculated radius of gyration of 7.33 nm (7.0 nm for F6P) is in good agreement with the SAXS data. There is a substantial decrease in the rotational angle between the top and bottom tetramers. Interestingly, all these changes have arisen from a reorientation of the alpha- and beta-subunits in the dimers. The interface region between the alpha- and beta-subunits is now approximately half the size of the one in the F6P-bound structure. This is the first time that the 3D structure of a eukaryotic Pfk1 has been visualized in its T-state (inhibited-state).  相似文献   

2.
The activity of yeast phosphofructokinase assayed in vitro at physiological concentrations of known substrates and effectors is 100-fold lower than the glycolytic flux observed in vivo. Phosphate synergistically with AMP activates the enzyme to a level within the range of the physiological needs. The activation by phosphate is pH-dependent: the activation is 100-fold at pH 6.4 while no effect is observed at pH 7.5. The activation by AMP, phosphate, or both together is primarily due to changes in the affinity of the enzyme for fructose-6-P. Under conditions similar to those prevailing in glycolysing yeast (pH 6.4, 1 mM ATP, 10 mM NH4+) the apparent affinity constant for fructose-6-P (S0.5) decreases from 3 to 1.4 mM upon addition of 1 mM AMP or 10 mM phosphate; if both activators are present together, S0.5 is further decreased to 0.2 mM. In all cases the cooperativity toward fructose-6-P remains unchanged. These results are consistent with a model for phosphofructokinase where two conformations, with different affinities for fructose-6-P and ATP, will present the same affinity for AMP and phosphate. AMP would diminish the affinity for ATP at the regulatory site and phosphate would increase the affinity for fructose-6-P. The results obtained indicate that the activity of phosphofructokinase in the shift glycolysis-gluconeogenesis is mainly regulated by changes in the concentration of fructose-6-P.  相似文献   

3.
Yeast phosphofructokinase was subjected to limited proteolysis by trypsin in the presence of different effectors. It could be demonstrated that the substrates MgATP and fructose-6-phosphate are able to protect the enzyme from inactivation by trypsin. Other effectors like AMP, ADP, phosphoenolpyruvate, citrate and ammonium ions exhibit only negligible effects. During the first step of degradation consisting in the conversion of the subunits from Mr 120,000 to 90,000 no significant effects of the substrates and effectors on the proteolytic inactivation of yeast phosphofructokinase can be observed. In the presence of ATP as well as of ADP the sensitivity of the enzyme against ATP inhibition is either not or only slightly influenced by proteolytic modification. The modified enzyme retains its sensitivity against activation by AMP, independently of whether effectors are present or absent during proteolysis. The kinetic parameters of the enzyme modified by subtilisin in the presence of ATP or of fructose-6-phosphate have been determined.  相似文献   

4.
Stopped-flow measurements have been carried out to study some basic allosteric properties of muscle and yeast phosphofructokinase at physiological concentration of enzyme. An important increase in the affinity for fructose-6-P accompanied by an intense decrease in the ATP inhibition was observed with the muscle enzyme, which also became insensitive to fructose-2,6-P2 under these conditions. Yeast phosphofructokinase exhibited a significant diminution in the inhibition by ATP, although with no apparent change in the affinity for fructose-6-P. These results provide strong support in favor of the dependence of the allosteric regulation of phosphofructokinase on its concentration in vivo.  相似文献   

5.
We have used the two PFK genes of Saccharomyces cerevisiae encoding the alpha and beta-subunit of the enzyme phosphofructokinase (Pfk) as heterologous probes to isolate fragments of the respective genes from the dimorphic pathogenic fungus Candida albicans. The complete coding sequences were obtained by combining sequences of chromosomal fragments and fragments obtained by inverse polymerase chain reaction (PCR). The CaPFK1 and CaPFK2 comprise open reading frames of 2961 bp and 2838 bp, respectively, encoding Pfk subunits with deduced molecular masses of 109 kDa and 104 kDa. The genes presumably evolved by a duplication event from a prokaryotic type ancestor, followed by another duplication. Heterologous expression in S. cerevisiae revealed that each gene alone was able to complement the glucose-negative phenotype of a pfk1 pfk2 double mutant. In vitro Pfk activity in S. cerevisiae was not only obtained after coexpression of both genes, but also in conjunction with the respective complementary subunits from S. cerevisiae. This indicates the formation of functional hetero-oligomers consisting of C. albicans and S. cerevisiae Pfk subunits. In C. albicans, specific Pfk activity was shown to decrease twofold upon induction of hyphal growth. CaPfk cross-reacts with a polyclonal antiserum raised against ScPfk and displays similar allosteric properties, i.e. inhibition by ATP and activation by AMP and fructose 2,6-bisphosphate.  相似文献   

6.
The allosteric transition of yeast phosphofructokinase has been studied by solution x-ray scattering. The scattering curves corresponding to the native enzyme (T conformation) were found to be similar to the curves recorded in the presence of saturating concentrations of fructose 6-phosphate (R conformation) or AMP (R or R' conformation). However, the curves obtained in the presence of ATP are clearly different: the radius of gyration increases and the secondary minima and maxima are systematically shifted to lower angles, suggesting a swelling of the enzyme in the presence of ATP. These results give the first direct evidence for the existence of an ATP-induced T' conformation, distinct in quaternary structure from the R and T states of the enzyme oligomer, in agreement with our previous modeling of yeast phosphofructokinase regulation. X-ray scattering data are discussed in relation to the distinct molecular mechanisms of the ATP and fructose 6-phosphate allosteric effects involving, respectively, sequential and concerted conformational changes of the enzyme oligomer.  相似文献   

7.
Phosphofructokinase: structure and control   总被引:10,自引:0,他引:10  
Phosphofructokinase from Bacillus stearothermophilus shows cooperative kinetics with respect to the substrate fructose-6-phosphate (F6P), allosteric activation by ADP, and inhibition by phosphoenolpyruvate. The crystal structure of the active conformation of the enzyme has been solved to 2.4 A resolution, and three ligand-binding sites have been located. Two of these form the active site and bind the substrates F6P and ATP. The third site binds both allosteric activator and inhibitor. The complex of the enzyme with F6P and ADP has been partly refined at 2.4 A resolution, and a model of ATP has been built into the active site by using the refined model of ADP and a 6 A resolution map of bound 5'-adenylylimidodiphosphate (AMPPNP). The gamma-phosphate of ATP is close to the 1-hydroxyl of F6P, in a suitable position for in-line phosphoryl transfer. The binding of the phosphate of F6P involves two arginines from a neighbouring subunit in the tetramer, which suggests that a rearrangement of the subunits could explain the cooperativity of substrate binding. The activatory ADP is also bound by residues from two subunits.  相似文献   

8.
Two approaches have been used to study the allosteric modulation of phosphofructokinase at physiological concentration of enzyme; a "slow motion" approach based on the use of a very low Mg2+/ATP ratio to conveniently lower Vmax, and the addition of polyethylene glycol as a "crowding" agent to favor aggregation of diluted enzyme. At 0.6 mg/ml muscle phosphofructokinase exhibited a drastic decrease in the ATP inhibition and the concomitant increase in the apparent affinity for fructose-6-P, as compared to a 100-fold diluted enzyme. Similar results were obtained with diluted enzyme in the presence of 10% polyethylene glycol (Mr = 6000). Results with these two approaches in vitro were essentially similar to those previously observed in situ (Aragón, J. J., Felíu, F. E., Frenkel, R., and Sols, A. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 6324-6328), indicating that the enzyme is strongly dependent on homologous interactions at physiological concentrations. With polyethylene glycol it was observed that within the physiological range of concentration of substrates and the other positive effectors, fructose-2,6-P2 still activates the liver phosphofructokinase although it no longer significantly affects the muscle isozyme. In the presence of polyethylene glycol, muscle phosphofructokinase can approach its maximal rate even in the presence of physiologically high concentrations of ATP. Three minor activities of muscle phosphofructokinase have been studied at high enzyme concentration: the hydrolysis of MgATP (ATPase) and fructose-1,6-P2 (FBPase), produced in the absence of the other substrate, and the reverse reaction from MgADP and fructose-1,6-P2. The kinetic study of these activities has allowed a new insight into the mechanisms involved in the modulation of phosphofructokinase activity. The binding of (Mg)ATP at its regulatory site reduces the ability of the enzyme to cleave the bond of the terminal phosphate of MgATP at the substrate site. The positive effectors (Pi, cAMP, NH+4, fructose-1,6-P2, and fructose-2,6-P2) decrease the inhibitory effect of MgATP. Citrate and fructose-2,6-P2 both act as mechanistically "secondary" effectors in the sense that citrate does not inhibit and fructose-2,6-P2 does not activate the FBPase activity, requiring both the presence of ATP to affect the enzyme activity. In conclusion it appears that the regulatory behavior of mammalian phosphofructokinases is utterly dependent on the fact of their high concentrations in vivo.  相似文献   

9.
Kominsky DJ  Thorsness PE 《Genetics》2000,154(1):147-154
Organisms that can grow without mitochondrial DNA are referred to as "petite-positive" and those that are inviable in the absence of mitochondrial DNA are termed "petite-negative." The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the alpha- and gamma-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F(1) component of mitochondrial ATP synthase are also petite-negative. Thus, the F(1) complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.  相似文献   

10.
The influence of enzyme concentration on the kinetic behavior of yeast phosphofructokinase has been examined. A marked decrease in the ATP inhibition was observed when the enzyme activity was studied in permeabilized cells (in situ) as well as when the kinetic study was carried out with the purified yeast enzyme at a concentration of 120 micrograms/ml as compared to a 100-fold diluted enzyme. A similar result was obtained by adding polyethylene glycol either to a cell free extract or to the diluted pure enzyme to increase the local protein concentration. However, enzyme concentration had no significant effect on the fructose-6-P saturation curve. These results provide evidence that the allosteric behavior of yeast phosphofructokinase is affected by enzyme concentration.  相似文献   

11.
ABSTRACT: BACKGROUND: A well known example of oscillatory phenomena is the transient oscillations of glycolytic intermediates in Saccharomyces cerevisiae, their regulation being predominantly investigated by mathematical modeling. To our knowledge there has not been a genetic approach to elucidate the regulatory role of the different enzymes of the glycolytic pathway. RESULTS: We report that the laboratory strain BY4743 could also be used to investigate this oscillatory phenomenon, which traditionally has been studied using S. cerevisiae X2180. This has enabled us to employ existing isogenic deletion mutants and dissect the roles of isoforms, or subunits of key glycolytic enzymes in glycolytic oscillations. We demonstrate that deletion of TDH3 but not TDH2 and TDH1 (encoding glyceraldehyde-3-phosphate dehydrogenase: GAPDH) abolishes NADH oscillations. While deletion of each of the hexokinase (HK) encoding genes (HXK1 and HXK2) leads to oscillations that are longer lasting with lower amplitude, the effect of HXK2 deletion on the duration of the oscillations is stronger than that of HXK1. Most importantly our results show that the presence of beta (Pfk2) but not that of alpha subunits (Pfk1) of the hetero-octameric enzyme phosphofructokinase (PFK) is necessary to achieve these oscillations. Furthermore, we report that the cAMP-mediated PKA pathway (via some of its components responsible for feedback down-regulation) modulates the activity of glycoytic enzymes thus affecting oscillations. Deletion of both PDE2 (encoding a high affinity cAMP-phosphodiesterase) and IRA2 (encoding a GTPase activating protein- Ras-GAP, responsible for inactivating Ras-GTP) abolished glycolytic oscillations. CONCLUSIONS: The genetic approach to characterising the glycolytic oscillations in yeast has demonstrated differential roles of the two types of subunits of PFK, and the isoforms of GAPDH and HK. Furthermore, it has shown that PDE2 and IRA2, encoding components of the cAMP pathway responsible for negative feedback regulation of PKA, are required for glycolytic oscillations, suggesting an enticing link between these cAMP pathway components and the glycolysis pathway enzymes shown to have the greatest role in glycolytic oscillation. This study suggests that a systematic genetic approach combined with mathematical modelling can advance the study of oscillatory phenomena.  相似文献   

12.
The phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) tetramers F4, F3L and F2L2 have been separated from human platelets, and purified to homogeneity by affinity chromatography on Dextran Blue-Sepharose 4B. The F subunits have a molecular weight of 85 000, identical to that of the M subunits. By contrast with L-type phosphofructokinase, the F-type enzyme seems to exist predominantly in a tetrameric form and not to aggregate to high molecular weight polymers. Specific activity of pure F4 phosphofructokinase is about 140 IU/mg of protein. Immunologically, it is easy to distinguish all the basic phosphofructokinase forms (i.e. M, L and F types); nevertheless a slight immunological cross-reactivity seems to exist between all these forms.  相似文献   

13.
Initial rate data obtained with purified yeast phosphofructokinase (PFK) show an ATP dependent kinetic cooperativity with respect to fructose-6-phosphate. In the presence of 25 mM phosphate, the cooperativity index (Hill number) is related to the half saturation concentration of fructose-6-phosphate as predicted by the concerted allosteric model in the case of a “K-system”. In the absence of phosphate, however, the kinetic behavior of yeast PFK is more complex and the cooperativity index is invariant with respect to the half saturation concentration of fructose-6-phosphate which is increased by ATP. In both cases, 5′AMP behaves as a strong activator of the enzyme. These kinetic data suggest that the two distinct functions of ATP as phosphate donnor and as allosteric inhibitor, respectively, are supported by different binding sites. These regulatory properties of yeast PFK are discussed in relation to glycolytic oscillations.  相似文献   

14.
The kinetic and molecular properties of a phosphofructokinase derived from a transplantable rat thyroid tumor lacking regulatory control on the glycolytic pathway were studied. The properties of the near-purified enzyme (specific activity 140 units/mg) were compared with those of phosphofructokinase from normal rat thyroid (specific activity 134 units/mg). The electrophoretic mobilities and gel elution behavior of these two enzymes were almost similar. The thyroid tumor phosphofructokinase showed, however, a greater degree of size and/or shape heterogeneity in the presence of ATP than the normal thyroid enzyme, as determined by gel filtration and sucrose density gradient centrifugation. Kinetic studies below pH 7.4 showed a sigmoid response curve for both enzymes when the velocity was determined at 1 mM ATP with varying levels of fructose-6-P. The interaction coefficient, however, was 4.2 and 2.6 for normal and tumor thyroid phosphofructokinase, respectively. Ammonium sulfate decreased the cooperative interactions with the substrate fructose-6-P in both enzymes. The thyroid tumor enzyme, however, was less sensitive to the inhibition by ATP and by citrate. The reversal of citrate inhibition by cyclic 3':5'-adenosine monophosphate was also less effective with the thyroid tumor phosphofructokinase, while the protective effect of fructose-6-P was stronger. The difference in citrate inhibition between tumor and normal thyroid enzyme was not strongly affected by varying the MgCl2 concentration up to 10 mM. It is concluded that the complex allosteric regulation typical of the normal thyroid phosphofructokinase is still present in the enzyme isolated from the thyroid tumor tissue. The latter, however, is more loosely controlled by its physiological effectors, such as ATP, citrate, and cyclic AMP.  相似文献   

15.
The interaction of several inhibitors with muscle phosphofructokinase has been studied by both equilibrium binding measurements and kinetic analysis. At low concentrations of citrate a maximum of 1 mol is bound per mol of enzyme protomer. Tight binding requires MgATP and very weak binding is observed in the absence of either magnesium ion or ATP. ITP at low concentrations cannot replace ATP. In the presence of MgATP and at pH 7.0, the dissociation constant for the enzyme-citrate complex is 20 muM. At 50 muM citrate and excess magnesium ion, the concentration of ATP required to give half-maximal binding of citrate is approximately 3 muM . Both P-enolpyruvate and 3-P-glycerate compete for the binding of citrate and the estimated Ki values are 480 and 52 muM, respectively. Creatine-P, another inhibitor of muscle phosphofructokinase, does not compete with the binding of citrate. Measurement of the equilibrium binding of ATP shows that citrate, 3-P-glycerate, P-enolpyruvate, and creatine-P all increase the affinity of enzyme for MgATP with the concentration required to give an effect increasing in the order given. In kinetic studies, citrate, 3-P-glycerate and P-enolpyruvate each act synergistically with ATP to inhibit the phosphofructokinase reaction. This is indicated by the observation that the three metabolites do not inhibit the enzyme with ITP as the phosphoryl donor and that they inhibit at ATP concentrations that are not themselves inhibitory. Furthermore, the sensitivity to the inhibitors increases with increasing ATP concentrations. Striking differences in the extent of inhibition can be seen by varying the order of addition of assay components. Preincubation of the enzyme with ATP and citrate, 3-P-glycerate, or P-enolpyruvate results in greater inhibition than when the inhibitor is added after the reaction is started with fructose-6-P. Furthermore, the inhibition is reversed partially 10 to 15 min after the addition of fructose-6-P. This phenomenon is particularly striking with creatine-P as the inhibitor. Very high concentrations of this inhibitor are required to show any effect if the inhibitor is added after fructose-6-P. These effects are interpreted as reflecting slow conformational changes between an active form with high affinity for fructose-6-P and an inactive, or less active, conformation that binds the inhibitors. Citrate, 3-P-glycerate, P-enolpyruvate, and creatine-P increase the rate of the phosphofructokinase at subsaturating concentrations of MgITP. The results indicate a common binding site on the enzyme for citrate, 3-P-glycerate, and P-enolpyruvate that is distinct from the ATP inhibitory site. An additional site (or sites) for creatine-P is indicated. All four inhibitors act synergistically with ATP by increasing the affinity of the enzyme for MgATP at an inhibitory site. The inhibitors appear also to increase the affinity of the catalytic nucleoside triphosphate site for substrate.  相似文献   

16.
Summary A new activator of phosphofructokinase, which is bound to the enzyme and released during its purification, has been discovered. Its structure has been determined as -D Fructose-2,6-P2 by chemical synthesis, analysis of various degradation products and NMR. D-Fructose-2,6-P2 is the most potent activator of phosphofructokinase and relieves inhibition of the enzyme by ATP and citrate. It lowers the Km for fructose-6-P from 6 mM to 0.1 mM.Fructose-6-P,2-kinase catalyzes the synthesis of fructose-2,6-P2 from fructose-6-P and ATP, and the enzyme has been partially purified. The degradation of fructose-2,6-P2 is catalyzed by fructose-2,6-bisphosphatase. Thus a metabolic cycle could occur between fructose-6-P and fructose-2,6-P2, which are catalyzed by these two opposing enzymes. The activities of these enzymes can be controlled by phosphorylation. Fructose-6-P,2-kinase is inactivated by phosphorylation catalyzed by either cAMP dependent protein kinase or phosphorylase kinase. The inactive, phospho-fructose-6-P,2-kinase is activated by dephosphorylation catalyzed by phosphorylase phosphatase. On the other hand, fructose-2,6-bisphosphatase is activated by phosphorylation catalyzed by cAMP dependent protein kinase.Investigation into the hormonal regulation of phosphofructokinase reveals that glucagon stimulates phosphorylation of phosphofructokinase which results in decreased affinity for fructose-2,6-P2, and decreases the fructose-2,6-P2 levels. This decreased level in fructose-2,6-P2 appears to be due to the decreased synthesis by inactivation of fructose-2,6-P2,2-kinase and increased degradation as a result of activation of fructose-2,6-bisphosphatase. Such a reciprocal change in these two enzymes has been demonstrated in the hepatocytes treated by glucagon and epinephrine. The implications of these observations in respect to possible coordinated controls of glycolysis and glycogen metabolism are discussed.  相似文献   

17.
Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. Recently, two different complementation groups (G13, G57), consisting of yeast nuclear mutants with defective F1, have been described. Biochemical analyses indicate that the mutational block in both groups of mutants affects a critical step needed for the assembly of the alpha and beta subunits into the F1 oligomer after their transport into mitochondria. In this study the ATP12 gene representative of the nuclear respiratory-deficient mutant of S. cerevisiae (pet) complementation group G57 has been cloned and the encoded product partially characterized. The ATP12 reading frame is 975 base pairs long and codes for a protein of Mr = 36,587. The ATP12 protein is not homologous to the subunits of F1 whose sequences are known, nor does it exhibit significant primary structure similarity to any known protein. In vitro import assays indicate that ATP12 protein is synthesized as a precursor approximately 3 kDa larger than the mature protein. The mitochondrial localization of the protein has been confirmed by Western blot analysis of mitochondrial proteins with an antibody against a hybrid protein expressed from a trpE-ATP12 fusion. Fractionation of mitochondria indicates further that the ATP12 protein is either a minor component of the matrix compartment or is weakly bound to the matrix side of the inner membrane. The molecular weight of the native protein, estimated from its sedimentation properties in sucrose gradients, is at least two times larger than the monomer. This suggests that the ATP12 protein is probably part of a larger complex.  相似文献   

18.
The kinetics of the reverse reaction catalyzed by Escherichia coli phosphofructokinase, i.e., the synthesis of ATP and fructose-6-phosphate from ADP and fructose-1,6-bisphosphate, have been studied at different pH values, from pH 6 to pH 9.2. Hyperbolic saturations of the enzyme are observed for both substrates. The affinity for fructose-1,6-bisphosphate decreases with pH following the ionization of a group with a pK of 6.6, whereas the catalytic rate constant and perhaps the affinity for ADP are controlled by the ionization of a group with a pK of 6. Several arguments show that the pK of 6.6 is probably that of the carboxyl group of Asp 127, whereas the pK of 6 is tentatively attributed to the carboxyl group of Asp 103. The pK of 6.6 is assigned to the carboxyl group of Asp 127 in the free enzyme, and a simple model suggests that the same group would have an abnormally high pK, above 9.6, in the complex between phosphofructokinase and fructose-1,6-bisphosphate. It is proposed that the large pK shift of more than 3 pH units upon binding of fructose-1,6-bisphosphate is due to an electrostatic repulsion that could exist between the 1-phosphate group and the carboxyl group of Asp 127, which are close to each other in the crystal structure of phosphofructokinase (Shirakihara, Y. & Evans, P.R., 1988, J. Mol. Biol. 204, 973-994). The same interpretation would also explain the much higher affinity of the enzyme for fructose-1,6-bisphosphate when Asp 127 is protonated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In this paper, we describe an efficient procedure for the purification of yeast phosphofructokinase. This procedure eliminates any time delay and enables to obtain an enzyme with minimum proteolytic alterations. The molecular weights of the oligomeric enzyme and of its constitutive subunits were both evaluated by means of several independent methods. However, the accuracy of each measurement was not sufficient to discriminate between an hexameric and an octameric structure of the enzyme oligomer. On the other hand, crosslinking experiments demonstrated the octameric structure of yeast phosphofructokinase. Obviously, some methods of molecular weight determination have led to erroneous results. In particular, our experiments show that the reliability of molecular weight determinations performed by gel filtration of native proteins must be considered with caution.  相似文献   

20.
Wu G  Sun Y  Qu W  Huang Y  Lu L  Li L  Shao W 《PloS one》2011,6(2):e17082
The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT), also known as glucosamine synthase (GlmS), catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (GM) microorganisms. This was shown by construction and analysis of two GFAT deficient strains, E. coli ΔglmS and S. pombe Δgfa1, and the ability of the GFAT encoding gene to mediate plasmid selection. The gfa1 gene of the fission yeast Schizosaccharomyces pombe was deleted by KanMX6-mediated gene disruption and the Cre-loxP marker removal system, and the glmS gene of Escherichia coli was deleted by using λ-Red mediated recombinase system. Both E. coli ΔglmS and S. pombe Δgfa1 could not grow normally in the media without addition of glucosamine. However, the deficiency was complemented by transforming the plasmids that expressed GFAT genes. The xylanase encoding gene, xynA2 from Thermomyces lanuginosus was successfully expressed and secreted by using GFAT as selection marker in S. pombe. Optimal glucosamine concentration for E. coli ΔglmS and S. pombe Δgfa1 growth was determined respectively. These findings provide an effective technique for the construction of GM bacteria without an antibiotic resistant marker, and the construction of GM yeasts to be applied to complex media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号