首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 µg/g dry mass) followed by anabasine (4.9 µg/g) and nicotine (0.6 µg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory.  相似文献   

2.
Opposing effects of spring defoliation on late season oak caterpillars   总被引:2,自引:0,他引:2  
ABSTRACT. 1. The pedunculate oak, Quercus rohur L., suffers high annual levels of spring defoliation in Wytham Woods. near Oxford.
2. This spring defoliation affects late season caterpillars through a variety of damage-induced changes in the leaves.
3. Diurnea fagella (D. & S.), one of the commonest late season caterpillars, shows reduced larval survival and pupal weight on regrowth foliage when compared to undamaged primary foliage.
4. D. fagella also suffer higher larval mortality on naturally damaged primary foliage than they do on undamaged foliage.
5. Despite this, the three commonest late season caterpillar species are more abundant on damaged trees than undamaged ones. and their distributions are biased towards damaged leaves within the canopy.
6. Other factors that may be more important than leaf damage in determining the distribution and abundance of late season caterpillars are discussed. D.fagella larvae spin their larval refuges more rapidly on damaged than undamaged foliage, and this may reduce mortality by natural enemies, or ameliorate adverse effects of weather.  相似文献   

3.
ABSTRACT.
  • 1 Mechanical damage to birch (Betula pendula Roth) leaves leads to an increase in the concentration of phenolic compounds, which spreads throughout the leaf within 8 days.
  • 2 Coleophora serratella L. (Lepidoptera: Coleophoridae) apparently responds to this chemical change over a similar time scale. Within 24 h of pin-pricking leaves the casebearer moves from the immediate vicinity of the damage, but is just as likely to move to an undamaged portion of the damaged leaf as to vacate the leaf entirely. After 8 days mines on undamaged portions of damaged leaves were significantly smaller than mines on undamaged leaves.
  • 3 Furthermore, Coleophora serratella reared on damaged trees took an average of 3 days longer to develop than those reared on undamaged trees.
  • 4 It has been suggested that increased movement in response to damage-induced chemical changes causes hyperdispersed damage on plant foliage. Both within and between-leaf casebearer damage patterns were shown to be aggregated on birch.
  • 5 Thus although mechanical damage can induce chemical and behavioural changes in the field, these are not reflected in the observed damaged patterns. We speculate on several possible reasons for this.
  相似文献   

4.
Feeding experiments with larvae of Spodoptera littoralis were performed with leaves from cotton plants subjected to damage and from undamaged plants. In the experiments, four different time intervals (1, 3, 7, and 14 days) after damage induction and two different levels (high and low) of herbivore damage were tested. Seven days after damage induction larvae fed less on the young top leaves from damaged plants for both levels of damage. At the high damage level, the larvae fed less on leaves from the damaged plants after just three days, and this effect still remained 14 days after damage infliction. When mature leaves from the middle of the plant were compared, no difference between treatments was observed.Two plant sizes were tested, small plants with 4–5 true leaves and large plants with 8–10 true leaves. In small plants the induced changes affecting larval feeding were found mainly in the youngest leaf at the top of the plant, while in large plants the induced effects were found in both the youngest and the second youngest leaves.In plants subjected to artificial damage, larvae fed less on top leaves of the damaged plants when compared to leaves from undamaged plants. When leaves from plants that had been artificially damaged were directly compared with leaves from plants damaged by herbivores, larvae fed more on the youngest leaves from artificially damaged plants when the plants were large. In small plants no significant difference was found when comparing artificial and herbivore damage.  相似文献   

5.
We have characterized, using several types of bioassays, the resistance induced in young tomato plants by feeding of the corn earworm, Helicoverpa zea. Beet armyworm larvae, Spodoptera exigua, and leafminers, Liriomyza trifolii, were used to assay the induced resistance. In whole-plant experiments, damage localized to a single leaflet of fourleaf tomato plants induced a systemic increase in resistance such that beet armyworm larvae confined to previously damaged (induced) plants grew at a rate about half that of larvae raised on control plants and consumed less leaf tissue from induced plants than from control plants. In experiments using excised leaves, beet armyworm larvae suffered increased mortality when reared on leaves from induced plants. The strength of this induced resistance varied spatially relative to the damaged position; moreover, the spatial distribution of induced resistance changed over a three-week period following damage. Other experiments demonstrated that the mechanisms of induced resistance in tomato foliage involves both a decrease in larval preference for and a decrease in the nutritional value of induced foliage. Induction also retarded the oviposition and/or early development of leafminers. Thus, induced resistance has relatively severe effects on the biology of subsequent herbivores. These data should allow us to begin to elucidate cause-effect relationships between induced resistance and induced chemistry in tomato plants.  相似文献   

6.
莫建初  周丽君 《昆虫知识》1995,32(2):100-102
用上年受害树和未受害树的当年新发叶在室内饲养油桐尺蠖幼虫,并用Folin-Denis分析方法测定了当年受害叶,受害后新发叶和未受害叶的总单宁含量。结果表明,取食受害叶的幼虫比取食未受害叶者存活率低20.5%,发有速度慢2天,体长短5.0mm,蛹重轻25.3%。叶内总单宁含量不因受害而上升,反而呈下降趋势,说明叶内成分中影响幼虫生长发育的是非单宁物质。  相似文献   

7.
The alkaloidal responses of wild tobacco to real and simulated herbivory   总被引:10,自引:0,他引:10  
Ian T. Baldwin 《Oecologia》1988,77(3):378-381
Summary I compared the induced alkaloidal response in undamaged leaves of plants subjected to herbivory by the larvae of Manduca sexta and to different simulations of this herbivory; all herbivory treatments removed similar amounts of leaf mass. Although larval feeding induced a significant increase (2.2x) in alkaloid concentrations compared to undamaged plants, the alkaloid responses to larval feeding were significantly lower than the responses to an herbivory simulation (4x controls) which involved removing the same amount of leaf area from the same positions on the leaf, over a similar time period. Moreover, another herbivory simulation, identical in amount of leaf mass removed and duration of damage to the larval feeding, but without regard to spatial array of leaf damage, resulted in an alkaloidal response (5.5x controls) higher still than the previous herbivory simulation. In a second experiment the importance of leaf vein damage on the induced alkaloidal response was examined. Here, leaf removal that involved cutting leaf tissues from between secondary veins before removing the midrib, resulted in alkaloidal responses that were significantly lower (1.7x controls) than responses from leaf removal that involved cutting both veins and midribs along with the intervein tissues (2.6x controls). Vein damage alone did not produce a significant response. These results indicate that herbivory is difficult to simulate: that how a leaf is damaged can be as important as the magnitude of leaf damage in determining a plant's response to damage.  相似文献   

8.
Callus cultures of two low-alkaloid lines of Nicotiana tabacum L. had considerably lower nicotine contents than cultures from the respective highalkaloid cultivars which were isogenic except for the two loci for alkaloid accumulation. Thus, there was a strong correlation between the nicotine content of callus cultures and the plants from which they were derived.  相似文献   

9.
1. Induced plant responses can affect herbivores either directly, by reducing herbivore development, or indirectly, by affecting the performance of natural enemies. Both the direct and indirect impacts of induction on herbivore and parasitoid success were evaluated in a common experimental system, using clonal poplar trees Populus nigra (Salicales: Salicaceae), the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and the gregarious parasitoid Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae). 2. Female parasitoids were attracted to leaf odours from both damaged and undamaged trees, however herbivore‐damaged leaves were three times more attractive to wasps than undamaged leaves. Parasitoids were also attracted to herbivore larvae reared on foliage and to larval frass, but they were not attracted to larvae reared on artificial diet. 3. Prior gypsy moth feeding elicited a systemic plant response that retarded the growth rate, feeding, and survival of gypsy moth larvae, however induction also reduced the developmental success of the parasitoid. 4. The mean number of parasitoid progeny emerging from hosts fed foliage from induced trees was 40% less than from uninduced trees. In addition, the proportion of parasitised larvae that survived long enough to issue any parasitoids was lower on foliage from induced trees. 5. A conceptual and analytical model is provided to describe the net impacts of induced plant responses on parasitoids, and implications for tritrophic interactions and biological control of insect pests are discussed.  相似文献   

10.
S. E. Hartley 《Oecologia》1988,76(1):65-70
Summary 1. The leaves of Betula pendula Roth trees were damaged artificially, or by insect-grazing. Both induced an increase in phenolic levels in damaged leaves, larger in the case of insect attack.-2. Some of the damaged trees were sprayed with an inhibitor of phenolic biosynthesis, (aminoxy) acetic acid, which led to a reduction in phenolic levels in both undamaged and damaged leaves. Hence both the effects of damage per se and damage-induced changes in foliage phenolic levels on insect feeding preference could be examined using this technique.-3. Herbivore feeding preferences were assessed in the laboratory by comparing damaged and undamaged leaves, with or without phenolic inhibition, using caterpillars of a natural birch feeder, Apocheima pilosaria D. & S. (Lepidoptera: Geometridae) and a non-birch feeder, Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae). Neither species showed any significant preferences and appeared indifferent to damage, irrespective of whether the trees had their damage-induced phenolic synthesis blocked.-4. The implications of these results for induced defense theory are discussed.  相似文献   

11.
 We carried out two experiments to determine the effect of leaf damage on plant attractiveness to pollinators using wild radish, Raphanus raphanistrum (Brassicaceae), a self-incompatible annual herb. Pairs of plants from 36 full-sib families were grown in pots in the greenhouse. One member of each pair was damaged by Pieris rapae larvae that were allowed to remove half of the leaf area of each of the first four rosette leaves. The plants were subsequently taken out for pollinator observations once a week from the beginning of flowering in late June until the end of August. We conducted two experiments to examine how foliar damage affected visitation by pollinators. In the first experiment, numbers of pollinators visiting plants were compared between damaged and control sibling plants. In the second experiment, the number of open flowers during observations was controlled to be the same for both damaged and undamaged sibs. Damage significantly decreased the number and size of flowers during the first observations in late June. Damaged plants received fewer visits by native bees during the first week of observations. Since damage did not affect native bee visits when the number of open flowers was equalized between treatments, flower number was probably the main cue attracting native bees to plants. In the experiment without flower number control, syrphid flies, the other abundant pollinator taxon, spent more time per flower on the undamaged than on the damaged plants. When flower number was controlled, flies probed significantly more flowers during each visit on the undamaged than on the damaged plants and had higher visitation rates to undamaged plants early in the season. Since syrphid flies preferred undamaged plants both with and without flower number control, they apparently used cues apart from flower number for visitation. The difference between undamaged and damaged plants in floral characteristics and pollinator visitation vanished within a few weeks after the start of flowering. This result suggests that early damage may not have a strong fitness effect through reduction in mating success. However, poor weather conditions can cause early mortality of plants in the field, and nutrient depletion and competition decrease fruit set of later flowers. Therefore, conditions exist under which visitation to early flowers may affect plant fitness. Received: 30 July 1996 / Accepted: 10 February 1997  相似文献   

12.
Levels of atmospheric CO(2) have been increasing steadily over the last century and are projected to increase even more dramatically in the future. Soybeans (Glycine max L.) grown under elevated levels of CO(2) have larger herbivore populations than soybeans grown under ambient levels of CO(2). Increased abundance could reflect the fact that these herbivores are drawn in by increased amounts of volatiles or changes in the composition of volatiles released by plants grown under elevated CO(2) conditions. To determine impacts of elevated CO(2) on olfactory preferences, Japanese beetles (Popillia japonica Newman) and soybean aphids (Aphis glycines Matsumura) were placed in Y-tube olfactometers with a choice between ambient levels of CO(2) gas versus elevated levels of CO(2) gas or damaged and undamaged leaves and plants grown under ambient levels of CO(2) versus damaged and undamaged plants grown under elevated levels of CO(2). All plants had been grown from seeds under ambient or elevated levels of CO(2). Painted lady butterflies (Vanessa cardui L.) were placed in an oviposition chamber with a choice between plants grown under ambient and elevated levels of CO(2). A. glycines and V. cardui showed no significant preference for plants in either treatment. P. japonica showed no significant preference between ambient levels and elevated levels of CO(2) gas. There was a significant P. japonica preference for damaged plants grown under ambient CO(2) versus undamaged plants but no preference for damaged plants grown under elevated CO(2) versus undamaged plants. P. japonica also preferred damaged plants grown under elevated levels of CO(2) versus damaged plants grown under ambient levels of CO(2). This lack of preference for damaged plants grown under elevated CO(2) versus undamaged plants could be the result of the identical elevated levels of a green leaf volatile (2-hexenal) present in all foliage grown under elevated CO(2) regardless of damage status. Green leaf volatiles are typically released from damaged leaves and are used as kairomones by many herbivorous insects for host plant location. An increase in production of volatiles in soybeans grown under elevated CO(2) conditions may lead to larger herbivore outbreaks in the future.  相似文献   

13.
The oviposition behaviour of Plutella xylostella L. (Lepidoptera: Plutellidae) on Chinese cabbage (Brassica rapa L. Pekinensis, cv. Wombok), canola (Brassica napus L. cv. Thunder TT), and cabbage (Brassica oleracea L. Capitata, cv. sugarloaf) (Brassicaceae) was studied in the laboratory. In no‐choice experiments moths laid most eggs on the stems and lower three leaves of cabbage plants, the lower three leaves of canola plants, but on the upper three leaves of Chinese cabbage plants. The effects of conspecific herbivore damage to foliage could be replicated by mechanical damage. When foliage was damaged, injured cabbage and canola plants were preferred for oviposition over intact conspecifics, whereas injured Chinese cabbage plants were less preferred than intact conspecifics. However, when root tissue was damaged, intact cabbage and canola plants were preferred over injured conspecifics, whereas moths did not discriminate between root‐damaged and intact Chinese cabbage plants. Injury to upper leaves significantly affected the intra‐plant distribution of eggs. In cabbage and canola plants, injury to leaf 6 significantly increased the number of eggs laid on this leaf, resulting in a significant decrease in the number of eggs laid on the lower foliage/stem of plants, whereas in Chinese cabbage plants it significantly decreased the number of eggs laid on leaf 6. Following oviposition on intact plants, neonate larvae established the vast majority of feeding sites on leaves 5–8 in all three host plants, indicating that larvae moved a considerable distance from preferred oviposition sites in cabbage and canola plants. The growth rate of neonates fed on leaf‐6 tissue was significantly greater than that of those fed on leaf‐1 tissue; >90% of larvae completed development when fed exclusively on leaf‐6 tissue but no larvae completed development when fed exclusively on leaf‐1 tissue. The study demonstrates the complex and unpredictable interactions between P. xylostella and its host plants and provides a basis from which we can begin to understand observed distributions of the pest in Brassica crops.  相似文献   

14.
Influence of plant antibiosis through four trophic levels   总被引:3,自引:0,他引:3  
D. B. Orr  D. J. Boethel 《Oecologia》1986,70(2):242-249
Summary The effects of an insect herbivore-resistant soybean genotype on relationships between four levels of a trophic system were examined in the laboratory using both greenhouse and field-grown plants. Pre-imaginal development of the predatory pentatomid, Podisus maculiventris (Say), was affected by soybean antibiosis in a manner similar to that of its lepidopteran prey, Pseudoplusia includens (Walker). Pre-imaginal development time was increased, and cumulative weight gain tended to be reduced on both greenhouse and field-grown resistant foliage; although mortality was increased on greenhouse-grown resistant foliage, it appeared unchanged on field-grown foliage. Reproductive capacity of P. maculiventris reared on P. includens larvae that were fed resistant soybean generally was unaffected, although peak progeny production was delayed and extended slightly. Pre-imaginal development and adult emergence of the egg parasitoid Telenomus podisi Ashmead from eggs of P. maculiventris reared on P. includens larvae that were fed resistant soybean were unaffected. However, the overall reproductive capabilities of this parasitoid were reduced. Our results demonstrate that plant antibiosis can influence the biology of organisms over four trophic levels, thus documenting a relationship heretofore undescribed. Determination of the final outcome of the interaction between plant resistance and biological control is difficult. The four trophic level model reported in this study further illustrates the complexity which hinhers a general understanding of these interactions.  相似文献   

15.
Summary Larvae of Platyprepia virginalis (Lep.: Arctiidae) and Orgyia vetusta (Lep.: Lymantriidae) feed on the foliage of bush lupine (Lupinus arboreus Sims) at Bodega Bay, California, USA, in February–April and May–July, respectively. Female O. vetusta attained lower pupal weights and produced fewer eggs on branches of L. arboreus which had experimentally received P. virginalis damage earlier in the same year, compared to those reared on control branches.Growth rates of first-instar O. vetusta were lower on undamaged leaves of previously damaged L. arboreus than on leaves of undamaged controls. This was true for lupine bushes damaged by P. virginalis in the field; and also for greenhouse-grown lupine plants damaged by Estigmene acrea (Lep.: Arctiidae) when excised foliage was used in the assay. However, fifth (last) instar female O. vetusta larvae showed no preference for damaged versus undamaged greenhouse-grown L. arboreus in their feeding or choice of a site for pupation.These experiments demonstrate the potential for competition-like interactions between herbivores mediated by changes in quality of the shared host.  相似文献   

16.
秦秋菊  李莎  毛达  李娜  李梦杰  刘顺 《生态学报》2016,36(7):1890-1897
植物花外蜜的分泌是一种植物间接防御反应。为了明确植食性昆虫、机械伤和机械伤诱导的挥发性气体在植物花外蜜诱导分泌中的作用,分析了咀嚼式口器昆虫棉铃虫Helicoverpa armigera(Hübner)、刺吸式口器昆虫棉蚜Aphis gossypii Glover取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物、针刺机械伤以及机械伤诱导挥发物、顺式-茉莉酮对棉花Gossypium hirsutum L.叶片花外蜜分泌量的影响。结果表明,棉铃虫取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物处理均显著增加了被处理叶片花外蜜的分泌量。棉花花外蜜的诱导效应在处理叶片上表现明显,并且在较幼嫩的第3片真叶上也有系统性增长。顺式-茉莉酮和机械伤挥发物处理1 d对棉花较幼嫩的第4、5片真叶花外蜜有诱导效应。棉花叶片花外蜜的诱导主要与植物组织损伤有关;不同口器类型的昆虫对棉花叶片花外蜜的诱导量不同,咀嚼式口器的棉铃虫对棉花花外蜜的诱导强度显著高于刺吸式口器的棉蚜;顺式-茉莉酮和机械伤诱导的挥发物能作为棉花植株间交流的信息物质诱导棉花幼嫩叶片花外蜜的分泌。  相似文献   

17.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   

18.
Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission. Eastern cottonwood (Populus deltoides) saplings were partially defoliated and physiological and growth responses were measured from undamaged and damaged leaves 7 days following damage. Defoliation reduced isoprene emission from undamaged and damaged leaves on partially defoliated plants. Photosynthetic rates and leaf carbon and nitrogen pools were unaffected by damage. Photosynthetic rate and isoprene emission were highly correlated in undamaged leaves on undamaged plants and damaged leaves on partially defoliated plants. There was no correlation between photosynthetic rate and isoprene emission in undamaged leaves on partially defoliated plants. Isoprene emission was also highly correlated with the number of source leaves on the apical shoot in damage treatments. Increased carbon export from source leaves in response to defoliation may have depleted the amount of carbon available for isoprene synthesis, decreasing isoprene emission. These results suggest that while isoprene emission is controlled at the leaf level in undamaged plants, emission from leaves on damaged plants is controlled by whole-branch allocation patterns. Received: 12 May 1998 / Accepted: 9 November 1998  相似文献   

19.
E. D. Fajer 《Oecologia》1989,81(4):514-520
Summary Little is known about the effects of enriched CO2 environments, which are anticipated to exist in the next century, on natural plant-insect herbivore interactions. To begin to understand such effects on insect growth and survival, I reared both early and penultimate instar larvae of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae), on leaves from one of their major hostplants, plantain, Plantago lanceolata (Plantaginaceae), grown in either ambient (350 PPM) or high (700 PPM) CO2 atmospheres. Despite consuming more foliage, early instar larvae experienced reduced growth on high CO2-grown compared to ambient CO2-grown leaves. However, survivorship of early instar larvae was unaffected by the CO2 treatment. Larval weight gain was positively correlated with the nitrogen concentration of the plant material and consumption was negatively correlated with foliar nitrogen concentration, whereas neither larval weight gain nor consumption were significantly correlated with foliar water or allelochemical concentrations. In contrast, penultimate instar larvae had similar growth rates on ambient and high CO2-grown leaves. Significantly higher consumption rates on high CO2-grown plants enabled penultimate instar larvae to obtain similar amounts of nitrogen in both treatments. These larvae grew at similar rates on foliage from the two CO2 treatments, despite a reduced efficiency of conversion of ingested food (ECI) on the low nitrogen, high CO2-grown plants. However, nitrogen utilization efficiencies (NUE) were unaffected by CO2 treatment. Again, for late instar larvae, consumption rates were negatively correlated with foliar nitrogen concentrations, and ECI was also very highly correlated with leaf nitrogen; foliar water or allelochemical concentrations did not affect either of these parameters. Differences in growth responses of early and late instar larvae to lower nitrogen, high-CO2 grown foliage may be due to the inability of early instar larvae to efficiently process the increased flow of food through the gut caused by additional consumption of high CO2 foliage.  相似文献   

20.
Using four-leaf tomato plants (Lycopersicon esculentum Mill) as a model system, we examined the spatial distribution of damage-induced changes in foliar protein activities. Terminal leaflets of third leaves of tomato plants were subjected to one of four types of damage, and the activities of four putative defenses — polyphenol oxidase, peroxidase, lipoxygenase, and proteinase inhibitors — were determined at four leaflet positions relative to the damaged leaflet. Multiple proteins were differentially induced by the different damage types. For a given damage type, the spatial pattern of induction was different for different proteins. More exhaustive spatial mapping of the polyphenol oxidase response to feeding by Helicoverpa zea Boddie revealed that damaged plants were more variable, both within and between plants, in the activity of this enzyme than undamaged plants. The spatial patterns of induction of these four putative defenses throughout the plant suggest that the induced plant is chemically heterogeneous and that different mechanisms of defense operate in different regions of the plant. These data are critical to an elucidation of cause-effect relationships between induced chemicals and induced resistance in tomato foliage. In addition, these data suggest that induction functions, in part, to increase chemical variation in tomato plants; the potential role of phytochemical variation in plant defense is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号