首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf beetles of the genus Platyphora, feeding on plant species containing pyrrolizidine alkaloids of the lycopsamine type, not only sequester these alkaloids and concentrate them in their exocrine defensive secretions, but also specifically process the plant acquired alkaloids. Using P. boucardi as subject, three mechanisms were studied: (i). utilization of host plant alkaloids that are not sequestered per se; (ii). elucidation of the mechanism of the already documented C-7 epimerization of heliotridine O(9)-monoesters; (iii). the specificity of insect catalyzed necine base esterification. P. boucardi does not sequester the triester parsonsine, the principal alkaloid of its host plant Prestonia portobellensis (Apocynaceae). Beetles fed with a purified mixture of nor-derivatives of parsonsine, obtained from Parsonsia laevigata, did not sequester the triesters but transformed them by partial degradation into monoesters that are accumulated in the defensive secretions. The mechanism of the previously described transformation of rinderine into intermedine by C-7 epimerization was elucidated by feeding C-7 deuterated heliotrine (3'-methylrinderine). The transformation of heliotrine into epiheliotrine (3'-methylintermedine) catalyzed by P. boucardi is accompanied by complete loss of deuterium, indicating the same mechanism of an oxidation-reduction process via a ketone intermediate as recently demonstrated in a pyrrolizidine alkaloid sequestering lepidopteran. P. boucardi is able to form ester alkaloids from five different necine bases fed as radioactively labeled substrates. However, besides C-7 epimerization the beetles are not able to convert simple necine bases into retronecine. The functional importance of the various alkaloid transformations is discussed in comparison to striking parallels of analogous reactions known from pyrrolizidine alkaloid sequestering Lepidoptera.  相似文献   

2.
Four pyrrolizidine alkaloids (PA) were isolated from Ageratum houstonianum and their structures elucidated by spectroscopical methods. Besides the already known lycopsamine three new PA were found. Their structures are the 2S-2-hydroxy-2,3-dimethyl-butanoyl-O(9) as well as the O(7) esters of retronecine and the O(9) derivative of heliotridine.  相似文献   

3.
Evidence is presented that the polyphagous arctiid Estigmene acrea is well adapted to sequester and specifically handle pyrrolizidine alkaloids of almost all known structural types representative of the major plant families with pyrrolizidine alkaloid-containing species, i.e. Asteraceae with the tribes Senecioneae and Eupatorieae, Boraginaceae, Fabaceae, Apocynaceae and Orchidaceae. The adaptation of E. acrea to pyrrolizidine alkaloids includes a number of specialized characters: (i) highly sensitive recognition of alkaloid sources by pyrrolizidine alkaloid-specific taste receptors; (ii) detoxification of pyrrolizidine alkaloids by N-oxidation catalyzed by a specific flavin-dependent monooxygenase; (iii) transfer and maintenance of all types of pyrrolizidine N-oxides through all developmental stages; (iv) conversion of the various structures into the male courtship pheromone hydroxydanaidal most probably through retronecine and insect specific retronecine esters (creatonotines) as common intermediates; (v) specific integration into mating behavior and defense strategies. Toxic otonecine derivatives, e.g. the senecionine analogue senkirkine, which often accompany the common retronecine derivatives and which cannot be detoxified by N-oxidation do not affect the development of E. acrea larvae. Senkirkine is not sequestered at all. Non-toxic 1,2-saturated platynecine derivatives that frequently occur together with toxic retronecine esters are sequestered and metabolized to hydroxydanaidal, indicating the ability of E. acrea to aromatize saturated pyrrolizidines. Although pyrrolizidine alkaloids, even if they are offered continuously at a high level (2%) in the larval diet, are non-toxic, E. acrea larvae are not able to develop exclusively on a pyrrolizidine alkaloid-containing plant like Crotalaria. Therefore, E. acrea appears to be specifically adapted to exploit pyrrolizidine alkaloid-containing plants as "drug source" but not as a food source.  相似文献   

4.
Several Longitarsus flea beetle species sequester pyrrolizidine alkaloids acquired from their Asteraceae and Boraginaceae host plants. We carried out feeding and injection experiments using radioactively labeled pyrrolizidine alkaloids to investigate the physiological mechanisms of uptake, metabolism and storage of alkaloids in adult beetles. We examined six Longitarsus species belonging to different phylogenetic clades in a comparative approach. All species that accepted pyrrolizidine alkaloids in a preceding food choice study showed the ability both to store pyrrolizidine alkaloid N-oxides and to metabolize tertiary pyrrolizidine alkaloids into their N-oxides. Regardless of whether the beetles' natural host plants contain pyrrolizidine alkaloids or not, these species were found to possess an oxidizing enzyme. This oxygenase appears to be specific to pyrrolizidine alkaloids: [3H]Atropine and [14C]nicotine, two alkaloids not related to pyrrolizidine alkaloids, were neither stored nor N-oxidized by any of the tested species. One species, L. australis, that strictly avoids pyrrolizidine alkaloids behaviorally, exhibited a lack of adaptations to pyrrolizidine alkaloids on a physiological level as well. After injection of tertiary [14C]senecionine, beetles of this species neither N-oxidized nor stored the compounds, in contrast to L. jacobaeae, an adapted species that underwent the same treatment. L. jacobaeae demonstrated the same efficiency in N-oxidation and storage when fed or injected with tertiary [14C]senecionine.Communicated by G. Heldmaier  相似文献   

5.
Tracer feeding experiments with (14)C-labeled senecionine and senecionine N-oxide were carried out to identify the biochemical mechanisms of pyrrolizidine alkaloid sequestration in the alkaloid-adapted leaf beetle Oreina cacaliae (Chrysomelidae). The taxonomically closely related mint beetle (Chrysolina coerulans) which in its life history never faces pyrrolizidine alkaloids was chosen as a 'biochemically naive' control. In C. coerulans ingestion of the two tracers resulted in a transient occurrence of low levels of radioactivity in the hemolymph (1-5% of radioactivity fed). With both tracers, up to 90% of the radioactivity recovered from the hemolymph was senecionine. This indicates reduction of the alkaloid N-oxide in the gut. Adults and larvae of O. cacaliae sequester ingested senecionine N-oxide almost unchanged in their bodies (up to 95% of sequestered total radioactivity), whereas the tertiary alkaloid is converted into a polar metabolite (up to 90% of total sequestered radioactivity). This polar metabolite, which accumulates in the hemolymph and body, was identified by LC/MS analysis as an alkaloid glycoside, most likely senecionine O-glucoside. The following mechanism of alkaloid sequestration in O. cacaliae is suggested to have developed during the evolutionary adaptation of O. cacaliae to its alkaloid containing host plant: (i) suppression of the gut specific reduction of the alkaloid N-oxides, (ii) efficient uptake of the alkaloid N-oxides, and (iii) detoxification of the tertiary alkaloids by O-glucosylation. The biochemical mechanisms of sequestration of pyrrolizidine alkaloid N-oxides in Chysomelidae leaf beetles and Lepidoptera are compared with respect to toxicity, safe storage and defensive role of the alkaloids.  相似文献   

6.
Levels of pyrrolic metabolites have been measured in the livers of rats given some pyrrolizidine alkaloids and semisynthetic derivatives. Structural and chemical features favouring the formation of such metabolites have been defined. The most important of these were: steric hindrance or chemical properties giving resistance to ester hydrolysis; lipophilic character, allowing access to hepatic microsomal enzymes; a conformation favoring microsomal oxidation of the pyrroline ring in preference to N-oxidation. In addition, the presence of ester groups gave the resulting pyrroles high chemical reactivity, leading to tissue binding.Amounts of pyrroles bound to liver were very low when animals were given either highly water soluble pyrrolizidine derivatives, including non-esterified bases or more-lipophilic esters if these were easily hydrolysed. Compounds prone to hydrolysis gave increased pyrrole levels in rats pretreated to deplete their esterase activity. Whereas heliotridine-based alkaloids usually give more pyrrole than similar retronecine esters, heliotridine ditiglate gave less pyrrole than retronecine ditiglate because the former was more open to hydrolytic attack.Among the carboxylic diesters, the cyclic retronecine diesters, in which the pyrrolizidine nucleus is more exposed to oxidative metabolism, gave the highest pyrrole levels in rats.Liver pyrrole measurements are useful for studying relationships between molecular structure, metabolism and toxicity of pyrrolizidine derivatives. They can be used for screening alkaloids for potential toxicity and for assessing dose levels suitable for toxicity tests when limited material is available.  相似文献   

7.
The polyphagous arctiid Grammia geneura appears well adapted to utilize for its protection plant pyrrolizidine alkaloids of almost all known structural types. Plant-acquired alkaloids that are maintained through all life-stages include various classes of macrocyclic diesters (typically occurring in the Asteraceae tribe Senecioneae and Fabaceae), macrocyclic triesters (Apocynaceae) and open-chain esters of the lycopsamine type (Asteraceae tribe Eupatorieae, Boraginaceae and Apocynaceae). As in other arctiids, all sequestered and processed pyrrolizidine alkaloids are maintained as non-toxic N-oxides. The only type of pyrrolizidine alkaloids that is neither sequestered nor metabolized are the pro-toxic otonecine-derivatives, e.g. the senecionine analog senkirkine that cannot be detoxified by N-oxidation. In its sequestration behavior, G. geneura resembles the previously studied highly polyphagous Estigmene acrea. Both arctiids are adapted to exploit pyrrolizidine alkaloid-containing plants as "drug sources". However, unlike E. acrea, G. geneura is not known to synthesize the pyrrolizidine-derived male courtship pheromone, hydroxydanaidal, and differs distinctly in its metabolic processing of the plant-acquired alkaloids. Necine bases obtained from plant acquired pyrrolizidine alkaloids are re-esterified yielding two distinct classes of insect-specific ester alkaloids, the creatonotines, also present in E. acrea, and the callimorphines, missing in E. acrea. The creatonotines are preferentially found in pupae; in adults they are largely replaced by the callimorphines. Before eclosion the creatonotines are apparently converted into the callimorphines by trans-esterification. Open-chain ester alkaloids such as the platynecine ester sarracine and the orchid alkaloid phalaenopsine, that do not possess the unique necic acid moiety of the lycopsamine type, are sequestered by larvae but they need to be converted into the respective creatonotines and callimorphines by trans-esterification in order to be transferred to the adult stage. In the case of the orchid alkaloids, evidence is presented that during this processing the necine base (trachelanthamidine) is converted into its 7-(R)-hydroxy derivative (turneforcidine), indicating the ability of G. geneura to introduce a hydroxyl group at C-7 of a necine base. The creatonotines and callimorphines display a striking similarity to plant necine monoesters of the lycopsamine type to which G. geneura is well adapted. The possible function of insect-specific trans-esterification in the acquisition of necine bases derived from plant acquired alkaloids, especially from those that cannot be maintained through all life-stages, is discussed.  相似文献   

8.
Two compounds, 9,10-epoxytetrahydroedulan (ET) and viridiflorine beta-lactone (VL), were identified as major components from the hairpencils of field-caught males of a danaid butterfly, Euploea mulciber. By contrast, laboratory-reared males entirely lacked VL, but possessed a significant quantity of ET. Various feeding experiments with larvae and indoor adult males strongly suggested that ET is biosynthesized de novo only after eclosion from nutrients ingested during the larval development. Since VL was suspected to be derived from pyrrolizidine alkaloids (PAs) acquired as an adult, tests for feeding response to and oral administration of four PAs (a 4:1 mixture of intermedine/lycopsamine, heliotrine, monocrotaline, and retronecine) were conducted. When the tarsi or proboscis were stimulated with PA solutions, males showed positive feeding responses (proboscis extension and sucking movements) to intermedine/lycopsamine, heliotrine, and retronecine in decreasing order of responsiveness, thereby providing evidence that male adults are endowed with taste receptor(s) specific to PAs on the legs as well as on the proboscis. Differently from gustatory responsiveness, only males fed with intermedine/lycopsamine produced a significant quantity of VL (ca. 35 microg/male), whereas those that ingested heliotrine or monocrotaline hydrochloride produced traces of VL (<0.18 microg/male). Uptake of retronecine did not lead to VL formation at all. In behavioral bioassays to test the attractivity of PAs to males, all individuals tested were attracted exclusively to intermedine/lycopsamine. This shows that certain PA(s) per se serve as attractant(s) for males in locating PA sources, and further suggests that in the field, males will seek particular PA(s) that are indispensable as precursors for the efficient biosynthesis of VL.  相似文献   

9.
Arctiids which as larvae sequester pyrrolizidine alkaloids (PAs) from their food plants are known to synthesize insect-specific PAs by esterifying necine bases derived from plant PAs with necic acids of insect origin. There are two classes of insect PAs, the creatonotines and the callimorphines. The creatonotines contain as necic acids either 2-hydroxy-3-methylbutyric acid (creatonotine A) or 2-hydroxy-3-methylpentanoic acid (creatonotine B). The three known callimorphines contain 2-hydroxy-2-methylbutanoic acid whose hydroxyl group can be either free (deacetylcallimorphine) or acetylated (callimorphine) or propionylated (homocallimorphine). Insect PAs are assumed to play an important role in the recycling of plant derived necine bases and the processing by trans-esterification of PA monoesters that cannot be directly transmitted to the insect's pupal and adult life-stages. The absolute configuration of the insect-specific necic acids was elucidated in the context of the suggested role of the insect PAs as insect-made mimics of plant monoester PAs of the lycopsamine type. For this purpose all needed stereoisomers were synthesized and a gas chromatography-mass spectrometry (GC-MS) method was established that allows the enantioselective separation and assignment of the stereochemistry of all insect specific necic acids as their methyl esters. The method could also be applied to the GC-MS analysis of the intact alkaloids which were hydrolyzed during injection and converted into their methyl esters. Analysis of the creatonotines and callimorphines isolated from the polyphagous arctiids Estigmene acrea and Grammia geneura that were fed with pure PAs and defined PA mixtures revealed the following absolute configuration: the callimorphines and creatonotine A were present in 2'R configuration, whereas creatonotine B was found as mixture of (2'R, 3'S)- and (2'S, 3'S)-stereoisomers. The ratio of 2'S to 2'R was extremely variable ranging from 98% S to 94% R. The cause of the lack of stereospecificity is discussed particularly in respect of a possible epimerization of the hydroxyl group at C-2' in analogy to the known epimerization at C-3' of plant acquired PAs of the lycopsamine type.  相似文献   

10.
Pyrrolizidine alkaloids (PAs) often serve as chemical mediators of plant-herbivore-predator interactions. Butterflies (Danainae and Ithomiinae) and moths (Arctiidae) usually acquire PAs from plant sources (larval host plants, flowers or withered leaves visited by adults—pharmacophagy) and thereby become chemically protected against predators; they also use PAs as pheromone precursors. Study by GC-MS of PAs in three species of Ithomiinae butterflies, their larval host plants and adult alkaloid sources showed three different acquisition patterns: (1) larvae of the primitive Tithorea harmonia sequester PAs from their food plant Prestonia acutifolia (Apocynaceae: Echitoideae), and adults may also acquire these alkaloids from plant sources; (2) larvae of the more derived Aeria olena feed on Prestonia coalita , in whose leaves no PAs were detected, but freshly emerged adults sometimes contain PAs and males intensively seek and sequester these alkaloids in plant sources; and (3) larvae of the still more advanced Mechanitis polymnia feed on several PA-free Solanum species, and adult males sequester the alkaloids from various plant sources. Males and females of all three species contain mostly two PAs, the diastereoisomeric retronecine monoesters lycopsamine and intermedine, stored in the N-oxide form. Larval host plants and adult plant sources showed a large array of PA structures, the most abundant and frequent being lycopsamine and its diastereoisomers intermedine, echinatine, rinderine and indicine, and the deoxy-analogues supinine and amabiline. Bioassays with wild caught and freshly emerged adults suggest that protection against predation by the orb weaving spider Nephila clavipes may be dependent on PA concentration and maybe some spider idiosyncrasies, but freshly emerged Aeria olena without PAs are also liberated by Nephila , suggesting other protective compounds. The role of this spider as a selective pressure for PA acquisition by ithomiines is not clear.  相似文献   

11.
An analytical method of improved sensitivity has enabled measurements to be made of N-oxide as well as pyrrolic metabolites formed from a range of unsaturated pyrrolizidine alkaloids in hepatic microsome preparations. Using microsomes from livers of phenobarbitone-pretreated male Fischer rats, all 13 alkaloids tested were metabolised to both N-oxides and pyrroles. The most lipophilic alkaloids gave enhanced rates of metabolism. No consistent relationship existed between rates of N-oxide and of pyrrole formation. The two pathways appeared to be independent. The ratio of N-oxide to pyrrolic metabolites varied, depending on the type of ester: it was highest for ‘open’ diester alkaloids, lowest for 12 membered macrocyclic diesters and for monoesters. Steric hindrance by the acid moiety could account for these differences, by affecting the balance between microsomal oxidation of the amino alcohol moiety at the nitrogen and C8 positions respectively and could explain the high pyrrole yields given by some macrocyclic diesters. The levels of pyrrolic metabolites bound to liver tissues and responsible for hepatotoxicity in rats given pyrrolizidine alkaloids, did not necessarily reflect the rates of formation of such metabolites measured in vitro. In the animal additional factors could influence the formation and tissue binding of pyrrolic metabolites, including the detoxication of alkaloids by hydrolysis and the chemical reactivity and stability of the toxic metabolites. A comparison of heliotridine esters with retronecine esters showed that the 7-hydroxyl or -ester configuration had a relatively small influence on the balance between formation of pyrrolic metabolites and detoxication by N-oxidation. The results did not support any hypothesis that heliotridine esters should generally be more hepatotoxic than analogous retronecine esters. The structure of the acid moiety was likely to have at least as much influence on toxicity as the base configuration.  相似文献   

12.
Pyrrolizidine alkaloids and their N-oxides can be extracted from the dried methanolic extracts of plant material using dilute aqueous acid. The subsequent integration of solid-phase extraction (with a strong cation exchanger) of the alkaloids and N-oxides from the aqueous acid solution, together with analysis using HPLC-ESI/MS, provides a method for the simultaneous profiling of the pyrrolizidine alkaloids and their N-oxides in plant samples and the collection of useful structural data as an aid in their identification. The N-oxide character of the analytes may be confirmed by treating analytical samples with a redox resin and observing the formation of the corresponding parent pyrrolizidine alkaloids. The present case study of Echium plantagineum highlighted a higher ratio of N-oxides to the parent tertiary bases than has been previously reported. Furthermore, a higher proportion of acetylated pyrrolizidine-N-oxides was observed in the flower heads relative to the leaves. Six pyrrolizidine alkaloids or pyrrolizidine-N-oxides, not previously reported from E. plantagineum, were tentatively identified on the basis of MS and biogenetic considerations. Three of these, 3'-O-acetylintermedine/lycopsamine, leptanthine-N-oxide and 9-O-angelylretronecine-N-oxide, have been reported elsewhere, whilst three others, 3'-O-acetylechiumine-N-oxide, echimiplatine-N-oxide and echiuplatine-N-oxide, appear unreported from any other source.  相似文献   

13.
Seven pyrrolizidine alkaloids (PAs) have been isolated from Lithospermum canescens and their structures determined by spectroscopical methods. Besides the known lycopsamine, O7-acetyl-lycopsamine and O7-acetylintermedine four new PAs were found. Their structures are O7-(3-hydroxy-3-methyl-butanoyl)-O9-(+)-trachelanthoyl-heliotridine (= O7-(3-hydroxy-3-methyl-butanoyl)-rinderine = canescine), O7-(3-hydroxy-3-methyl-butanoyl)-O9-(-)-viridifloryl-heliotridine (= O7-(3-hydroxy-3-methyl-butanoyl)-echinatine = canescenine and their O13-acetyl-derivatives (= acetylcanescine; acetylcanescenine).  相似文献   

14.
Frölich C  Ober D  Hartmann T 《Phytochemistry》2007,68(7):1026-1037
Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either before or after this modification are converted into their O(9)-esters by esterification with one of the stereoisomers of 2,3-dihydroxy-2-isopropylbutyric acid, the unique necic acid of PAs of the lycopsamine type. Secondly, the necine O(9)-esters may be further diversified by O(7)- and/or O(3')-acylation.  相似文献   

15.
The relative retention of 3H and 14C on incorporation of d-, l- and dl-isomers of [14C]arginine and [14C]ornithine into retrorsine using L-[5-3H]arginine as an internal standard has been measured. The retronecine portion of the pyrrolizidine alkaloid retrorsine, present in Senecio isatideus plants, is shown to be derived from l-arginine and l-ornithine.  相似文献   

16.
Oreina cacaliae (Coleoptera, Chrysomelidae) produces in its elytral and pronotal defensive secretion seneciphylline N-oxide together with small amounts of another pyrrolizidine alkaloid tentatively identified as senecionine N-oxide. This is a strong departure from the chemical composition of the defensive secretions in related species, characterized by complex mixtures of cardenolides, synthesized by the beetles from cholesterol. It is suggested that O. cacaliae sequesters the alkaloids from its host-plant, Adenostyles leucophylla. Other specimens of O. cacaliae from far distant populations feeding on Senecio nemorensis, Petasites paradoxus or P. album also produced pyrrolizidine alkaloids, but not O. speciosissima feeding on the same food plants and producing cardenolides. In addition to pyrrolizidine alkaloids, O. cacaliae secretes ethanolamine, which is also found in all the cardenolide-producing species.  相似文献   

17.
Two new pyrrolizidine alkaloids, ideamines A and B, together with other analogs (lycopsamine and parsonsine) were isolated in the N-oxide forms from adult bodies of the Apocynaceae-feeding danaine butterfly, Idea leuconoe. Ideamine A was characterized as a homolog of lycopsamine, in which the viridifloric acid moiety was replaced by a 2-ethyl-2,3-dihydroxybutanoic moiety. Likewise, ideamine B was identified as a nor-derivative of parsonsine, in which the trachelanthic acid moiety was replaced by a 2-ethyl-2,3-dihydroxybutanoic moiety diastereomeric to the necic acid from ideamine A.  相似文献   

18.
62 pyrrolizidine alkaloids and derivatives have been screened for acute and chronic hepato- and pneumotoxicity by the single dose method previously described. This procedure is satisfactory for the compounds of medium to high hepatotoxicity but failed to detect toxicity in certain other compounds of known, low hepatotoxicity. New findings significant in relation to hepatotoxicity are as follows: (i) On a molar basis, diesters of heliotridine and retronecine are about 4 times as toxic as the respective mono-esters and heliotridine esters are 2-4 times as toxic as retronecine esters. (ii) Crotanecine esters are less toxic than retronecine esters, and the 6,9-diester madurensine, 2-4 times less toxic than the 7,9-diester anacrotine (the difference being ascribed to there being only one reactive alkylating centre in the toxic metabolite from madurensine). (iii) Hepatotoxicity was confirmed for 7-angelylheliotridine but not observed for 9-angelyheliotridine and 7- and 9-angelylretronecine. (iv) Other significant compounds failing to induce hepatotoxicity were 9-pivalyl- and 7,9-dipivalyheliotridine, the alpha- and beta-epoxides of monocrotaline, 7-angelyl-1-methylenepyrrolizidine and the methiodides of monocrotaline and senecionine. The following compounds are readily converted by rat liver microsomes in vitro into dehydroheliotridine (or dehydroretronecine): 7- and 9-angelyheliotridine, 7- and 9-angelylretronecine, 7,9-dipivalylheliotridine and otosenine. 7,9-Divalerylheliotridine, the alpha- and beta-epoxides of monocrotaline, and retusamine yield pyrrolic metabolites more slowly. The preparation and characterisation of several alkaloid derivatives are described. Chronic lung lesions were produced by most compounds which gave chronic liver lesions, although a higher dose was required in some instances. This requirement may sometimes mean that chronic lung lesions cannot be induced because of the intervention of acute or peracute deaths. Apart from this factor, structure activity requirements for pneumotoxicity are the same as for hepatotoxicity, consistent with their being both caused by the same toxic metabolites.  相似文献   

19.
A comprehensive GC-MS analysis of 8 Ipomoea species belonging to the subgenus Quamoclit, section Mina revealed that the members of this taxon form combinations of two necine bases with rare necic acids resulting in unique pyrrolizidine alkaloids. The occurrence and diversity of these metabolites show remarkable variations: Some species, especially Ipomoea hederifolia and Ipomoea lobata, are able to synthesize a large number of alkaloids whereas others, especially Ipomoea coccinea and Ipomoea quamoclit, are poor synthesizers with only a few compounds. However, these metabolites are apparently chemotaxonomic markers of this infrageneric taxon in general. They represent either esters of (-)-platynecine (altogether 48 ipangulines and 4 further esters including results of a previous study) or esters of (-)-trachelanthamidine, an additional novel structural type called minalobines (altogether 21 alkaloids). Both types are characterized by section-specific rare necic acids, e.g., ipangulinic/isoipangulinic acid, phenylacetic acid. The alkaloids of Ipomoea cholulensis, I. coccinea, I. hederifolia, Ipomoea neei, and Ipomoea quamoclit were mono and diesters of platynecine. Minalobines turned out to be metabolites of I. lobata (Cerv.) Thell. (syn.: Mina lobata Cerv.) lacking ipangulines. The major alkaloid of this species, minalobine R, has been isolated and identified as 9-O-(threo-2-hydroxy-2-methyl-3-phenylacetoxy-butyryl)-(-)-trachelanthamidine on the basis of spectral data. Apparently only two of the species included in this study, Ipomoea cristulata and Ipomoea sloteri, are able to synthesize both, ipangulines as well as minalobines. Minalobine O could be isolated as a major alkaloid of I. cristulata, its structure has been established as 9-O-(erythro-2-hydroxy-2-methyl-3-tigloyloxy-butyryl)-(-)-trachelanthamidine on the basis of spectral data.  相似文献   

20.
Feeding experiments with 12-phenyl[2,2-2H2]dodecanoic acid and the correponding methylester resulted in the formation of 2-phenylethanol (probably produced via β-oxidation) and high amounts of 2-phenylethylesters of free fatty acids from the defensive secretion of Oxytelus sculpturatus rove beetles. The extraordinarily high amount of the metabolites occurring in the glands after administration of methyl-12-phenyl[2,2-2H2]dodecanoate had a significant effect on the toxicity of the toluquinone-saturated defensive secretion mixture. Analogous experiments with 11-phenyl-[2-2H]undecanoic acid revealed a less efficient incorporation of this precursor leading to esters of 1-phenylethanol and 4-phenylbutan-2-ol and traces of 10-phenyl-1-decene probably formed via oxidative decarboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号